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Abstract:  We present a method for dispersion-tailoring of OmniGuide
and other photonic band-gap guided fibers based on weala@ti@ns
(“anticrossings”) between the core-guided mode and a naaigited in an
intentionally introduced defect of the crystal. Because ¢bre mode can
be guided in air and the defect mode in a much higher-indexeriaht we
are able to obtain dispersion parameters in excess of SD@&MM-km.
Furthermore, because the dispersion is controlled entlvgl geometric
parameters and not by material dispersion, it is easilylignly structural
choices and fiber-drawing speed. So, for example, we demadashow
the large dispersion can be made to coincide with a dispedimpe that
matches commercial silica fibers to better than 1%, promisfiicient
compensation. Other parameters are shown to yield digpefde trans-
mission in a hollow OmniGuide fiber that also maintains lowsles and
negligible nonlinearities, with a nondegeneratepTEnode immune to
polarization-mode dispersion (PMD). We present theaaétialculations
for a chalcogenide-based material system that has redssely experimen-
tally drawn.
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1. Introduction

1.1. Overview

OmniGuide fiber [1] is a new class of Bragg fiber [2] based onidimectional reflectivity [3].

In these fibers, as depicted in Fig. 1(a), a large, hollow t®murrounded by a multilayer
omnidirectional mirror that confines light similarly to alloav metallic waveguide [4]. Such
fibers have previously been explored for their potentialigpsess the losses and nonlinearities
that inherently limit propagation within solid materialéere, we address a different question,
that of tailoring fibeispersiorfor applications such as accurate dispersion compensatidn
dispersionless transmission. In contrast to previous warklispersion control in Bragg and
photonic-crystal fibers [5—10], we introduce a more geneaaicept of designing dispersion
via interactions between the core-guided modes and modekded within intentional defects
(e.g.Fabry-Perot cavities) in the multilayer cladding. In thiaywwe are not only able to ob-
tain extremely large dispersion parameters, but we alseftidrom a set of easily understood,
independent “knobs” that one can adjust in order to tailerftmctional form of the disper-
sion to suit particular needs. The strength of these knobsalso be interpreted as measures
of performance degradation due to manufacturing inactesadloreover, unlike traditional
silica fibers, in our fibers the intrinsic material dispersis negligible, so the group-velocity
dispersion is controlled entirely via tunable geometricapaeters.

The multilayer cladding of the fiber in Fig. 1 has a photonindbgap that confines light in a
certain frequency range determined by the periodicity. Bynging the periodicity, or equiva-
lently the overall scale to which the fiber is drawn, one cadglight at selectable wavelengths.
Although the materials of the cladding may be highly lossyonlinear, these properties can
be suppressed by many orders of magnitude for the core-duiaeles, which have almost
all of their fields within the hollow core. This permits a widenge of materials and wave-
lengths to be considered, including some that are not néyraaienable to dielectric waveg-
uiding [11-13]—and, in particular, one can choose high ircdemtrast chalcogenide/polymer
combinations [12, 13] that lead to omnidirectional reflecti Omnidirectionality, while not
strictly required for guidance, is strongly correlatedhwét metallic waveguide-like regime in
which the light is almost entirely excluded from the cladgiin Section 2 we discuss the tools
that we use for calculating the behavior of such fibers, aif@ktion 3 we analyze the behavior
and theory of ordinary OmniGuide fibers.

Given any periodic photonic-crystal structure, one of tleenental building blocks for de-
signing new behavior is the introduction défectsin the periodicity [14]. Such defects can
confine localized modes whose frequencies lie within thedbgap, for example the familiar
Fabry-Perot cavity mode [15] localized in an altered layka anultilayer film (1d-periodic
crystal). Another kind of defect is the termination of thgstal itself, which can give rise to
surface states localized around the interface. We canecbeth sorts of localized defect modes
in an OmniGuide fiber by altering one or more of the periodadding layers, as depicted
by the second layer of Fig. 1(b). (Here, the layers are lab&l¢ “2,” etc. starting from the
innermost layer, as shown in Fig. 2.) Because such a modegéaed from the core by a
finite number of crystal layers, however, it ciateractwith the core-guided modes when their
dispersion curves intersect, formimgticrossingshat have predictably and radically altered
dispersion. Section 3.2 discusses a simple model in whigkytlalitative behavior of anticross-
ings and their dispersion can be understood. This modekslics to define a set of “knobs”
that in Section 4 we apply to design a dispersion-compergséitier and in Section 5 to design
two zero-dispersion transmission fibers.
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Fig. 1. (a) Defect-free OmniGuide fiber and (b) OmniGuide dispers@mpensating fiber.
(Not to scale.) The defect-free (“long-haul”) fiber consists of ancaie (R=15.35um)
surrounded by consecutive layers of refractive index=1.5 (tdn€)refractive index=2.8
(red) materials. In this fiber, all the high-index layers have the samentbésk(0.153:m)
and all the low-index layers have the same thickness (Qu883 The outermost region is a
thick layer that provides structural stability. The actual number of laysesl is larger than
in this figure; in order to minimize radiation losses one would use 20 layarsooe. The
OmniGuide dispersion-compensating fiber is a modified structure thadiexla defect,
i.e. the thickness of one of the dielectric layers has been altered.

Air core Layer 3 Layer 7 Cladding
Layer 1 Layer 5

Layer 2 Layer 6
Layer 4 Layer 8

Fig. 2. Nomenclature: “Layer 1" denotes the material layer closest taitltore, the next-
closest material layer is “layer 28tc.“Core” means the air core inside the dielectric mirror
and “cladding” means all layers outside the core. This figure is notrdtawscale and
includes a reduced number of layers.
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1.2. Fiber dispersion

The chromatic (group-velocity) dispersion of a fiber is dlguquantified in terms of the dis-
persion parametdd, which is defined from the dispersion relation as [16]

2mc d?p

D=-%7 Gu2 @)

wherec is the speed of light) the vacuum wavelengthy the angular frequency, arfél the
wave number.

In the telecommunications field there is tremendous intéredispersion and dispersion
tailoring. A few years ago, the preferred strategy to avgtical signal degradation due to
chromatic dispersion was to minimize the dispersion patamaf transmission fibers, and
thus fibers tailored to have zero dispersion at the operatianelength—dispersion-shifted
fibers—were invented [17]. Later, it was found that in ordestppress nonlinear effects such
as four-wave mixing (FWM) in dense wavelength-division riplétxing (DWDM) systems,
some dispersion was necessary; the point of zero dispensisrtherefore shifted away from
the operating wavelength. Such nonzero Dispersion-shiiters (NZDSF), which are widely
used today, have a relatively low dispersion parameter elrakie may strongly vary across
the transmission band. Because the fibers have a non-z@ersisn, it becomes necessary to
compensate the accumulated dispersion when transmittieglong distances or at high bit
rates [16].

Dispersion compensation is usually accomplished througé tise of dispersion-
compensating fibers [18], which are fibers with a large, negalispersion parameter. When
a pulse that has been broadened due to propagation throughsanission fiber with a posi-
tive dispersion parameter passes through a fiber with nvegaispersion, it can be compressed
and regain much of its original shape. Absent other sourtsgoal degradation such as non-
linear effects, the pulse will fully recover its originalegte when the length and dispersion
parameteb of the transmission fibgit) and dispersion-compensating filiel) obey:

Lg-Dg+Li-Di=0 (2)

Creating a system where this equation is obeyed for a singlelength is simple, as one can
always choose a length of the dispersion-compensating thiaemwill fulfill Eq. 2. However,
accurately compensating the dispersion across a wide lsamiie challenging becaugk
often varies significantly across the wavelength windowedus modern telecommunication
systems, for instance varying fromi3 to ~6 ps/nm-km in Corning’s E-LEAF fiber. To enable
accurate dispersion compensation for multiple waveles)gtiederivativesof the dispersion
parameter with respect to wavelength for the dispersionpamsating and transmission fibers
must also match. Typically, higher-order derivatives & tlispersion parameter for transmis-
sion fibers are small, and therefore reduce this requiretoent

0Dy oD _
o gy O ®)

Combining Egs. (2) and (3) enables the definition of a reduliggersion slop® that must
be the same for the transmission fiber and the dispersiopeonsating fiber, if the dispersion-
compensating fiber is to accurately compensate the digpersthe transmission across a wide
band:

Lg-

1 oD
R==.— 4
D oA @)
To perform accurate dispersion compensation, it is coretyunecessary to tailor the dis-
persion properties of the dispersion-compensating filmeattain the proper reduced dispersion
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slope. However, due to their small index contrast and sigptemetrical structure, silica fibers
offer limited opportunities for such tailoring. Bragg filseland especially those using a high
index-contrast, offer much more room for dispersion tailgand this has already been applied
in several instances. Ferrando, Silvestre and Aa] as well as Marcou, Brechet and Roy [6]
showed that one could balance the waveguide dispersionhanthaterial dispersion in a low
index contrast Bragg fiber to create a fiber with zero disparever a wide wavelength range,
which yields a fiber with interesting nonlinear propertifecently Ouyang, Xu and Yariv [7]
showed that by combining a high index contrast and a smad, core can attain a large, nega-
tive dispersion parameter. The literature also offers moneexamples of dispersion tailoring
applied in the wider areas of photonic crystals [8] and phiaterystal fibers [9].

Using defects to tailor the dispersion, as we propose to dbignwork, is advantageous
over applying a small core size as was done in [7] for seveadans. First, it enables a large
dispersion parameter for a large-core fiber, thus reduangimear effects. Furthermore, we can
tailor the waveguide dispersion properties of the fiber auahrgreater level of control, which
both enables the creation of dispersion-compensatingsfibigh highly customized dispersion
properties and opens up the possibility for other sorts béotispersion tailoring, such as
zero-dispersion and multiple-zero-dispersion transiorisfibers.

2. Theoretical tools

The tools used in this work are the same as in [1], and are lmastt transfer-matrix methods
developed by [2]. For waveguides that lie alongzlais, we express the electromagnetic fields
in the form:

F (r)g(Pz-wt+me) (5)

)

wherem is the angular-momentum “quantum number” ghds the (complex) wavenumber.
We use Maxwell's equations to formulate the problem in teahthe longitudinal fields &,
andH,) for a given(m, 8, w). The fields in each layer are expanded in Bessel functig(isr)

ando(kyr) with k; = | /réc2/c2 — B2

H, = AJ+BY (6)
E,=CJ+DY

This yields a set of four coefficients (A, B, C and D) that désethe field in each layer. By
matching the tangential field components across the boigsdbetween consecutive layers,
we obtain a transfer matrix [2] that yields the coefficiemt®ne layer as a function of the field
in neighboring layers. The product of the transfer matrfoegach layer yields a singlex44
transfer matrix that relates the fields in the core to thedigidhe outermost layer. By applying
the boundary condition of zero incoming flux at the outerntager [19], we obtain the eigen-
modes of the system including both guided and leaky modes.atikantage of this approach
over other methods often used to characterize optical fiferanstance beam propagation
methods or plane-wave based mode solvers [20]) is that theashexploits the cylindrical
symmetry of the system to achieve high efficiency, makingagyeto perform parameter ex-
ploration and optimization. The method has been verifiedtdyce the same results for both
the real and the imaginary part 8f as more computationally demanding, generic methods.
Combined with perturbation-theory techniques that aréablé for high-index contrast sys-
tems [21-23], the method is also an excellent starting goindescribing systems that do not
exhibit complete cylindrical symmetry [1].
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3. General principles
3.1. OmniGuide fiber without defects

In this section we will summarize the key features of the GBuidle long-haul fiber (the defect-
free fiber), which was introduced in Ref. [1]. This fiber catsiof an air core surrounded by
a cladding of consecutive layers of high and low index materiThe relative thickness of the
layers is chosen according to the grazing-incidence guesdge condition [24]:

h_ VMo ™
o V-1

whered is the layer thickness) is the index of refraction, anti/lo signify high/low-index
layer.

In [1], a system with indices of refraction of 1.6 and 4.6 gowith an air core of index
1 was used, while we will here use indices of 2.8 and 1.5 siheset indices correspond to
more recent experimental systems [12, 13]. For these indi€g. 7 yieldsd,; = 0.30a and
dio = 0.70a, wherea = dy; + djo is the thickness of a bilayer. For the long-haul fiber, we tse t
high-index material in the odd-numbered layers, becaesecttectivity of the dielectric mirror
increases when the innermost layer is high-index.

Since Maxwell's equations are linear and scale-invariitg,convenient to express all dis-
tances in units o, all angular frequencies in units ofi2/a, and all wavenumbers in units of
2m/a. Only when calculating physical quantities (such as thpaiision parametd) is it nec-
essary to match the parameteo an absolute length scale. We choose the val@esofthat the
dielectric mirror provides maximum confinement for the cehvavelength in the transmission
band. For instance, if we want to transmit across the 40 nnai@Hof long-haul telecommu-
nication systems, we choose amf 0.51 um to provide maximum confinement around 1550
nm.

The band structure (dispersion relation) for the lowesieomodes of the OmniGuide Long-
Haul fiber is illustrated in Fig. 3. In Fig. 3(a), we have péattthe edges of the transverse
electric and magnetic band gaps together with the lightdihair (w = c), where we define
TE/TM polarization as having electric/magnetic field in fhlane transverse to the direction
of propagation. Pure TM modes are confined by the TM band gale whre TE modes are
confined by the wider TE band gap. However, for modes with agulan quantum number
larger than zero, the modes are hybridized with both TM and@ponents. Therefore, the
magnitude of the TM band gap determines the available bafttvior transmission in these
modes. Moreover, even for a pure TE mode, operation outse&l&¥ gap may be problematic
due to radiative coupling via fiber imperfections. When deiaing the available bandwidth,
we thus consider the frequency rarajeng the light linethat is inside the TM band gap, since
our operating mode is very close to the light line. Normallizen plotting a band diagram, one
would just include the fiber bands in the figure that displégstiand edges. However, because
the large core places the bands of interest extremely aabe fight line 8 = w/c), we instead
plot the bands separately in Fig. 3(b), where we plot theueegy (v/c) minuswavenumber
(B) as a function of wavenumber. The proximity to the light logn be appreciated by noticing
that the scale on thgaxis of this plot is two orders of magnitude smaller than ttedes of the
X axis.

The strong confinement in the fiber core, as illustrated by &igrakes it natural to label the
modes in the diagram in analogy with metallic waveguidedntrast, the near degeneracies
in weakly guiding silica fibers that enable the “LP” mode g [25] do not apply to our
fiber. Unlike the metallic nomenclature, we lalml~ 0 modes HE or EH instead of TE or
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Fig. 3. (a) Band gaps and light line for OmniGuide long-haul fiber apdii@persion rela-
tions for the lowest-order modes.
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Fig. 4. Fraction of energy in the HEmode that is not confined in the core. The entire line
shows the degree of confinement across the TE band gap, while theadliof the curve
indicate the part that is within the TM band gap (1430-1830nm) as well a&Blyap.

TM, since the higher order modes are not strictly transvelsetric or magnetic due to finite
penetration into the cladding. We apply the HE/EH label fdugccording to whether the
TE/TM component is dominant, as described in Referenceé-dla more detailed discussion
of the modal structure of the OmniGuide fiber, see Refere2@E [

Just as in a metallic waveguide, the lowest-loss mode is dedt-order, circularly-
symmetric, “azimuthally polarized” Tdz mode. With only 17 layers (8.5 bilayers) surrounding
the hollow core, the radiation losses of thepT Ehode becomes 0.001 dB/m! Due to its strong
confinement in the core, the mode exhibits dramatic supiares§the nonlinearities and losses
of the cladding material [1]. For instance, across the emrerating band, the absorption losses
for the TE1 mode here are at least 40,000 times smaller than the bulkghmsolosses of the
materials. Thus, to limit the absorption losses to 0.01 dB/kne can use materials with a
bulk absorption of up to 400 dB/km, greatly expanding theamal-design flexibility. Acces-
sible materials include high-index chalcogenide glassbi;h have recently been co-drawn in
fibers together with polymers with a low index of refractidr2[ 13]. Reference [13] demon-
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Fig. 5. Dispersion parameter for the gilEmnode in the OmniGuide long-haul fiber, where
the solid part of the curve indicates the range that is within the TM band gpirvthe
TM band gap the dispersion parameferanges from 7.5 to 11.4 ps/nm-km.

strates experimentally that OmniGuide fibers can suppnd&sabsorption losses by up to four
to five orders of magnitude at 1@m, from bulk polymer losses of 10,000-100,000 dB/m to
propagation losses of less than 1 dB/m.

The dispersion properties for the OmniGuide long-haul fiver the wavelength range avail-
able for transmission can be found in Fig. 5, where we haveéguldhe waveguide dispersion
as a function of wavelength. The strong concentration ofribde in the core explains why the
material dispersion becomes negligible (less than 1% dfitad). The figure illustrates that the
fiber has dispersion values that are comparable to thosemste dispersion-shifted fibers
(between 7.5 and 11.4 ps/nm-km within the TM gap), and thextitepersion slope is very low
(averaging 0.01 ps/nfrkm, which is an order of magnitude smaller than the slopeashidg’s
E-LEAF fiber).

The favorable performance parameters of thg;TfBode may be reduced by fiber imper-
fections (such as surface roughness, bends and ellipfieiyich can cause coupling to more
lossy modes. (Due to the large core and the high index canthesfiber supports a substan-
tial number of higher-order modes.) Coupling to these higitder modes will not result in
modal dispersion as it does for multimode silica fibers, h@gesince the higher-order modes
have substantially higher losses than thgiliBode, making the fiber effectively single mode,
similar to what was observed in metallic waveguides. Néweiss, mixing/leakage due to im-
perfections may become the dominant loss mechanism.

3.2. OmniGuide fiber with defects

The dispersion relation of the OmniGuide fiber can be sigmifily altered by introducing a
geometric defect—a change in thickness of one (or more) tlgddyers—into the otherwise
periodic mirror structure. In this section, we introduceirape model that can explain the
qualitative effects of such defects.

The introduction of a geometrical defect leads to the foiomedf a “defect mode” similar to
the situation in doped semiconductors. The energy of thidam®substantially localized within
the defect itself, and its dispersion relation is situateside the band gap, and a large portion
of it is below the air light line. At points in the band diagramiere the defect mode would
intersect with a core mode of the same azimuthal symmétny=€ 0) and (form = 0 modes)
the same polarization, the defect mode may interact wittrctiie mode. Thus, instead of the
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Fig. 6. Schematic representation of the effect of interaction betweentdeid core modes.
Panel (a) shows the dispersion relations for the two modes without ititeraand panel
(b) shows how modal interaction changes the dispersion relations.

core mode and the defect mode crossing one another, the fiukr will be “transformed” into

a defect mode, and vice-versa, over a certain frequencyeraégch band features are called
“anticrossings” in solid-state physics [27]. In Fig. 6 wesb@anade a schematic representation of
this process. In Fig. 6(a) we see the dispersion curve foramode and a defect mode without
interaction. The slope (group velocity) of the defect madmuch smaller than the slope of the
core mode, because the group velocity for a mode localizadriedium of high refractive index
(Vg ~ ¢/n) is much lower than for a mode localized in the carg+ c). This difference in group
velocity makes the modes likely to intersect and implies@ngt dispersion (rapid slope change)
in the resulting anticrossing. Fig. 6(b) illustrates thieeff of modal interaction, where the two
modes no longer cross one another and instead the “core nsbdeges its nature to become
a “defect mode” and vice versa. In the transition region,dbiee mode radically changes its
group velocity (approximately frora to c/n), which is synonymous with that mode having a
large dispersion parameter in that frequency range. Fitj2a) illustrates the transition from
a core-confined to a defect-confined mode.

Quantitatively we can describe anticrossings in terms afptad-mode theory [28, 29],
whereby we can determine many features of the interacti@valypating the coupling between
the core and the defect modes, in direct parallel with thettiganding approach in solid-state
physics (see e.g. [27]). While such theory in principle cazuaately describe the interactions of
our system, it is in practice hard to make accurate predistabout dispersion values, because
in our system it is unclear precisely what constitutes thectwpled” systems. Nevertheless,
coupled-mode theory may be of great benefit for prediathimgngesn dispersion values due to
modifications to the fiber structure and we will use it with restisuccess to predict the effect
of changing the location of the defect layer.

The magnitude of the frequency range over which the transdition takes place depends on
the strength of the interaction between the fiber mode andefexct mode, or in other words
the degree of overlap between the fields of the two modeselfrtteraction is weak, which
will be the case if the defect is located far from the core,ftequency range over which the
transition occurs will be narrow, resulting in sharp kinkghe dispersion relation for the given
mode, as illustrated in Fig. 7(a). On the other hand, if thieraction is strong, the transition
will take place over a broader frequency range and the kinkb&asmoothed, as illustrated in
Fig. 7(b). Since the dispersion parameeis proportional tod?w/d 32, stronger interaction
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Fig. 7. Schematic representation of the effect of varying strength®déhinteraction. The
modal interaction is weaker in panel (a) than in panel (b), resulting iragosh “kink” in
(a) and therefore a larger value of the dispersion parameter overeanawow wavelength
range.

translates into lower dispersion values.

Independent of the strength of the interaction, we find thatésulting product of dispersion
parameter and wavelength range over which we achieve #p&diion parameter, i.e. the area
A under the dispersion cuni(A) around the anticrossing, is only a function of the diffeenc
in 1/vq between the core and the defect mode:

-2 2
A= DdA:/i<i)dA:A<i>:i_i @®)

1 1 0A Vg Vg Vg1 Vg2
This equation allows one to make simple predictions aboaitattainable dispersion charac-
teristics. In our fiber, the anticrossing reduces the gralpoity fromc to c/2.8, which gives
A=1.8/c=6-10° (ps/nm-km)(nm). For a wavelength range of 40 nm, the formula thus yields
an averag® of about 150,000 ps/nm-km. However, slope matching reqmergs, which we
discuss later, reduce the usable area by a factor of 3-10ltiresin an average dispersion
parameter of 15,000-45,000 ps/nm-km over a 40 nm band.

The frequency at which the modal interaction takes placemi@pstrongly on the frequency
range at which the defect mode itself exists. This frequeaage, in turn, depends strongly
on the size of the defect. Therefore, if we want to shift thegérency of modal interaction
up or down, we can easily accomplish this by decreasing seasing the size of the defect,
respectively. Thus, we find that size and location of theaefeovide us with two “knobs” that
can be used to tailor the dispersion properties of the fibatiitively predictable ways.

Through the use of more complex defects, we can further malé properties of the fiber.
This could be accomplished by using multiple defects or biggua single defect that supports
multiple defect modes. If we use a rather large defect, thesndefect would support multiple
modes and this would enable the interaction with the cordiced modes at multiple wave-
lengths. For the dispersion-compensating fibers presémt®dction 4 we will mainly restrict
ourselves to the use of a single, rather small defect, wtalé@wBection 5 will demonstrate that
the use of a defect that supports multiple modes can be usedgating a fiber with multiple
points of zero dispersion.

The model for modal interactions presented here is onlytdrate limit of weak interac-
tions. For systems with stronger interactions between théesiit is imprecise to consider the
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Fig. 8. Schematic representation of the interaction between a defectandameultiple core
modes. Panel (a) shows the defect mode (blue) and the core miedeséparately, while
panel (b) shows the resulting modal structure when the modes interact.

fiber and the defect as two separate systems whose resudthtdiagram is the sum of the
band diagram of the fiber and the defect separately. Furtiresrthe simultaneous interaction
between the defect and multiple bands may also alter theeelmdind diagram. So, the real
band diagram for the fiber with a defect must be calculatelgusikact methods such as those
described in Section 2. Nevertheless, the qualitativaifeatof the anticrossing model remain.

So far, we have considered only the interaction of the defexte with the lowest order core
mode. In fact the defect mode alters the behavioalbfmodes that have the same azimuthal
symmetry and polarization as the defect mode. In Fig. 8 we lilstrated this by plotting a
more realistic picture of the band structure. In Fig. 8a weehschematically plotted the three
lowestm = 0 modes (in red) together with one defect mode (in blue). Efarence we have
also included the light line in aif} = w/c), which illustrates that the defect mode is below
the light line for a substantial part of its frequency ranigeFig. 8b, we see the effect of the
interaction between the defect mode and the core-confinetksad-or low frequencies, the
three core-confined modes are all located above the ligatdird they strongly resemble the
modes of the OmniGuide fiber without defects. As the frequéncreases, the lowest = 0
mode, the T mode, starts interacting with the defect mode. TheiTiBode changes its
character towards the defect mode (transforming from A toAZpund the same frequency
the next lowestm = 0 mode, the Tk, mode, changes its character, and it starts to resemble
the TR mode (transforming from B to D). For higher frequencies, tiede which at lower
frequencies was almost identical to thegpEnode is now almost completely identical to the
TEgp1 mode of the defect-free OmniGuide fiber. We thus see that éfiecttmode can induce
a transition from one core-confined mode to its neighbormg-confined mode. This change
continues for all highem=0 modes, and we therefore see that the presence of the defkes
all the core-confined modes take a “step down” around theifreges where the defect mode
crosses the dispersion curve of the core-confined modessilicms between core-confined
modes can give large dispersion values useful for dispermpensation. Such a mode has a
frequency region of large negative dispersion followed loggion of large positive dispersion.
This might be useful for certain dispersion-compensataremes.

The model discussed above can also explain several inteydstitures of the defect-free
OmniGuide fiber, whose dielectric mirror is perfectly pelimas in Fig. 1(a). For this struc-
ture, the termination of the periodic layers is itself a ‘&&df that can support a localized state,

#2267 - $15.00 US Received March 24, 2003; Revised April 25, 2003
(C) 2003 OsA 19 May 2003/ Vol. 11, No. 10/ OPTICS EXPRESS 1186



known as a surface state [14]. The interior surface of the iGmide long-haul fiber of Sec-
tion 3.1 supports such a state and this can be seen in therglmpeelation of Fig. 3. For
example, the HE mode undergoes an anticrossing similar to the lowest mo&égin8, and
therefore transitions to a surface state underneath theliiig, while the EH; mode undergoes

a transition like the second-lowest mode in Fig. 8 to becorkg Hike. In this case, the states
do not include amm = 0 TE mode, so the Tg modes are not affected. (This is because the
“pure” defect mode of a flat surface would be a TM mode.)

The large dispersion parameters at the edges of the band.id Fr the Tk, mode of the
OmniGuide long-haul fiber can also be understood in lighhefanticrossing model. When the
mode reaches the edges of the gap, there is an interactioth@itontinuum of cladding modes
that leads to high dispersion. (This is only a rough pictsmege the core/cladding modes do
not remain weakly interacting.)

Examples of silica-based systems in which mode dispersinte attributed to anticrossings
include fiber Bragg gratings [30] (FBGs) and W-profile digien-compensating fibers [31]. In
FBGs, the periodic index modulation (1D photonic crystaflates a band gap via an anticross-
ing between forward and backward propagating modes at taggBwavelength, leading to
strong dispersion effects. The strength of the interadbietween the forward and backward
propagating modes is determined by the strength of the intedulation, and stronger modu-
lation gives lower dispersion over broader bandwidth, icoadance with Eq. 8. Exploiting the
band-edge in FBG and similarly in etalons (thin-film filterg)ften by putting multiple filters
in sequence, enables very accurate dispersion contraderavide band. [32, 33]. So-called
W-shaped DCFs have a W-formed index profile: a high-indeg surrounded by a low-index
ring, and outside of this ring there is another ring of higtheix, which is finally surrounded by
a low-index cladding. Thus, light can be index-guided iheitthe high-index core or the high-
index ring. Due to the different effective indices in theeand in the high-index ring, modes
confined in those two regions core will have different groefoeities. Due to interaction be-
tween the modes, the anticrossing creates a mode whictdrarssitself from being confined
in the core to being confined in the high-index ring over aaiarfrequency range, and in this
transition region the mode exhibits a very large dispersiod this has been demonstrated both
theoretically [31] (-5100 ps/nm-km) and experimentall$]8-1800 ps/nm-km). However, be-
cause the difference in effective index between the higleircore and the high-index ring is
at most on the order of a few percent, the dispersion paramétde much lower than in an
OmniGuide dispersion-compensating fiber.

4. Design of dispersion-compensating fibers

Having concluded on general principles that the OmniGuiberfstructure offers an oppor-
tunity to obtain a large dispersion parameter, we turn todixsign of an actual dispersion-
compensating fiber. In Section 4.1 we demonstrate that wasmthis structure to create a fiber
with remarkable dispersion magnitudes and show how torttil® dispersion. In Section 4.2,
we discuss the important issue of coupling between thisedsspn-compensating fiber and
silica-based transmission fibers. In Section 4.3 we consiigdeimpact of material parameters
on the performance of the fiber.

4.1. Optimizing performance parameters

When tailoring the dispersion properties of the fiber, we tyaimake use of three “knobs:” the
location of the defect, the size of the defect, and the olvecaling of the structure.

The significance of the location of the defect can easily baewstood by analyzing the
defect-core interaction model with coupled-mode thedrusding Dirac notation, we describe
the operating mode (field pattern) of the defect-free fibégasand of the defect mode &g.),
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then by substitutingt (bonding/antibonding) combinations of these states in¢ovariational
theorem (or, equivalently, using first-order perturbationpled-mode theory), one finds that
the frequency splitting is proportional to the inner praduc

Ao~ O (g Als) (9)

whereH is a coupling operator (the “Hamiltonian” operator of themtmned system). This
inner product has two main contributions, from the expoiaétdil of |4) in the defect (peak
of |gr)) and vice versa.

Calculations show that in the dielectric mirror, the fieldcags by approximately a factor
of three for each bilayer. Therefore, the contribution te #plit from each of the two terms
mentioned above should decay by approximately a factorre&tt we separate the defect and
the core by an additional bilayer. However, the sum of thaseterms will not necessarily
decay by exactly a factor of three, because the relativeepbithese two terms can change;
this will induce an oscillation in addition to the overallppnential decay of the splitting, as
seen below.

It then follows that the increased dispersion at the and&irg is inversely proportional to
Aw, and thus increases exponentially (plus some oscillatidth)the depth of the defect as seen
in table 4.1. This is due to the fact that thg8 width of the anticrossing region is proportional
to Aw, combined with Eg. 8.

In Figs. 9(a) and (b) we show exact calculations of the diiparmrelation and the dispersion
parameter as a function of wavelength for four differentatomns of the defect: the second,
fourth, sixth, or eighth layer. In all cases, we create thfeatdoy making one high-index layer
twice as thick as all the other high-index layers. The thédses of all remaining layers are cho-
sen according to the grazing-incidence quarter-wave tiondif Eq. 7, such that all remaining
high-index layers have the same thickness and all low-ildgars have the same thickness.
Since an even-numbered layer has the high-index valuenttgmost layer here is low-index.
In Fig. 9(a), we have indicated the point of minimum dispamsparameter for each of the
dispersion curves from Fig. 9(b) with a dot.

Table 1. The dispersion increase at an anticrossing is roughly propairtathe amplitude
of the exponential field tails as a function of defect location, causing thaugt of the two
to be roughly constant (with some oscillation).

| Defect layer | 2 | 4 ] 6 | 8 | 10 | 12 |
Max field (arb. units) 0.51 0.22 0.092 0.039 0.017 | 0.0070
D (ps/nm-km) -45,000| -51,100| -159,000| -511,000| -1.45M | -2.14M
D -max field (arb. units) 23,000 | 11,000 | 15,000 20,000 | 23,000 | 15,000

Furthermore, the plots reveal that we can obtain extremelyel dispersion parameters,
around -500,000 ps/nm-km, by placing the defect in the bigimermost layer. These values
are more than three orders of magnitude larger than therdispeparameter of contemporary
dispersion-compensating fibers and four to five orders ofnitade larger than the dispersion
in most transmission fibers. Thus, the dispersion accueudiiabm the propagation through
10 km of transmission fiber can be compensated by propagidiongh approximately 1 me-
ter of these dispersion-compensating fibers. Because thesvave attain for the waveguide
(geometric) dispersion are so large, we need not considesrttall contribution from material
dispersion. Fig. 9(a) also shows that the point of minimuspéision parameter for all four
curves is below the light linec§/c=f3). We will further discuss the consequences of the mode
being below the light line in Sec. 4.2 and 4.3.
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Fig. 9. Dispersion relation (a) and dispersion curve (b) for four déffié locations of the
defect. Both curves show that the transition from core-confined mottetdefect mode
takes place more rapidly when the defect is located far from the corehwbsuilts in a
large negative dispersion parameter over a narrower band. Theopoimimum dispersion
parameter is indicated with a dot on the dispersion relations.

By locating the defect deeper in the mirror, we obtain a higligpersion parameter value
over a narrower band. Consequently, the slope of the digpecarve is also greater the deeper
we bury the defect. Thus, when choosing how far away from thre t place the defect, we
do so to ensure that the reduced dispersion slope appratymairresponds to the slope of
the transmission fibers whose dispersion we want to compenave, for instance, want
to compensate the dispersion of Corning’s E-LEAF fiber, vehdispersion slope makes the
dispersion parameter double across the 40 nm C-band, wesehodocate the defect in the
fourth layer from the core. With the defect in this layer, sh@pe of our fiber corresponds fairly
well with the slope of the E-LEAF fiber over a wavelength ramgl in excess of the C-band.

In order to fine-tune the performance of the fiber, we turn éosacond knob we have at our
disposal: the size of the defect. The purpose of this finentuis to ensure that the reduced
dispersion slope of the dispersion curve accurately matttfeeslope of the target transmission
fiber. For instance, upon inspection of the dispersion ctioveahe structure with its defect
in the fourth layer in Figure 10, we find that the reduced disipa slope of the OmniGuide
dispersion-compensating fiber at 1530 nm matches the rddlispersion slope of Corning’s
E-LEAF fiber at 1550 nm. We would thus like to “move” the disgien curve for this fiber by
20 nm. By coupled-mode theory, we would thus like to incrahsethe resonance wavelength
of the defect mode by approximately 1.5%. If we assume thensasce mode of the defect is
the lowest mode of the defect and model it as a Fabry-Perdycawrounded by metallic walls,
simple analysis shows that we can increase the resonanadength by 1.5% by increasing
the width of the cavity by 1.5%, and we indeed find that suchnaneiase in the width gives
the predicted effect, as illustrated in Fig. 10. Having tlitiee thickness of the defect layer,
we obtain a fiber whose slope matches the slope of Cornind’&AF fiber to a precision
that exceeds the variations in the slope due to fiber manufagtinaccuracies and seasonal
variations in temperature [35].

This sensitivity to small changes in the thickness of thedgfyer can place high demands
on manufacturing tolerances, which could result in low mieithbn yields. We can address this
problem by exploiting a third knob, namely the possibilifwarying the thickness of all layers
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Fig. 10. Dispersion curve for two slightly different sizes of the defetie defect for the
red curve is 1.5% larger than the defect for the blue curve.

via overall scaling, controlled via the fiber drawing speBdcause of the sensitivity of dis-
persion properties for photonic-band-gap fiber with deféctvariations in layer thickness, the
needed rescaling would be very small, and we would therefotexpect significant degrada-
tion of any specifications for the outer diameter.

The effect of rescaling the fiber dimensions is to change tadirgy parametea, which
shifts the entire dispersion curve proportionally to thargie ina. For instance, an increase in
dimensions by 1% will translate the dispersion curve by 15owards the longer wavelengths
and therefore decreases the reduced dispersion slope liagio® where the dispersion slope
is negative. In addition to translating the dispersion eufghanging the x-scale of Fig. 10),
a change im also changes the y-scale of the dispersion curve: the vdltieeomaximum
dispersion parameter changes inversely with the change in

We can also change the thicknesses of multiple dielectyertaindependently, for instance
if further fine-tuning of the dispersion properties is dedirThe use of multiple defects could
create multiple regions of high dispersion, and by expigitnultiple defects these regions can
be placed at arbitrary frequencies relative to one anotb&ng a single, large defect would
create multiple regions of high dispersion with a nearlydikequency spacing between them.
We do not, however, exploit the simultaneous use of multiigifects in this paper.

Finally, we can also alter many properties of the fiber by divanthe size of the core. We
find that the dispersion properties of the fiber remain ssigly constant with core diameter,
however, in the regime of interest for us (negative disparsiope). This is because the contri-
bution to the dispersion from the core sizdigre ~ 1/R? [1], so only for very small values of
R does this become significant. This mechanism explains the @ispersion in small core-size
fibers observed by Ouyarg al.[7].

To give a specific example of the effects of core size in Omid&fibers with defects, Fig.11
shows the dispersion curve for two fibers whose only diffeeeis that one has a core radius
of 14.8 um while the other’s core is six times small&,= 2.47 um. The properties that are
most strongly affected by changing the core area are thénaamities and intermodal coupling
by fiber imperfections. As we reduce the core area, the éftentodal area is reduced, which
increases any nonlinear effects. Because the defect madeaiidy located around the ring
defined by the defect, we find that the modal arebnisarly proportional to the core radius
(and not proportional to the square, as it is for core modes).
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Fig. 11. Dispersion curve for two different core sizes, the large ¢@@) having a core
radius of 14.8um and the small core (blue) having a radius of 2.88.

4.2. Coupling

In order to induce a dispersion that is three orders of madaitarger than the dispersion of
silica-based dispersion-compensating fibers, we charggeature of the operating mode radi-
cally across the band where the mode is confined. At the Idnexpiency (longest wavelength)
the mode resembles the operating mode of an OmniGuide lanbfiber, a metallic-like Ty
mode which in our dispersion-compensating fiber has more38e5% of its power in the core.
This mode is located above the light line, and thus the comfame of this mode is entirely pro-
vided by the photonic band gap of the dielectric mirror sunding the air core. At the higher
frequency, which is where we in fact operate the fiber to obd&persion-slope matching, the
mode profile is radically different, with most of the powecdded in the vicinity of the defect
layer. The mode is located well below the light line and tfemeis confined relative to the air
core by index guiding. In the outer direction the field islstiinfined by the photonic band gap.
This mode is therefore a good example of a surface state Thé]difference in modal profile
is illustrated in Figure 12 where we see the modal fields aiveflequency (corresponding to a
wavelength of 1.754m) and at a higher frequency (corresponding to a wavelengthb&Lim).
These frequencies lie at either side of the frequency reglmre the anticrossing occurs.

The operating mode has a profile very dissimilar from thatryf ansmission fiber, so it
is nearly impossible to couple directly between the two. ko to obtain efficient coupling,
one may introduce an initial taper in the disperson-comatms fiber (a common technique
for coupling to modes with unusual profiles [36]). By deciegsll the dimensions of the fiber
by approximately 13%, the field profile of the operating modk resemble the T mode
of the OmniGuide long-haul fiber. We can thereby couple diyeo a tapered version of the
dispersion-compensating fiber from the OmniGuide long-fibar to compensate dispersion
accumulated in the latter.

If one wants to compensate the dispersion accumulated itecqorary silica transmission
fibers, it is also necessary to convert the linearly polariaperating mode of single-mode
silica fibers (the Lipy mode) into the Tg; mode. This can be accomplished, for example, by
two steps. First, one butt-couples from silica fibers in®lt; 1 mode of the OmniGuide fiber,
a process which is simple due to the strong similarity beiwtbe HE ; of OmniGuide’s fibers
and the LB; mode of silica fibers. Second, one can convert from the;H& the Tk; mode
using a bend converter [37], a process that can yield more36&6 coupling efficiency [38]
for one of the L3; polarizations.
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Fig. 12. Panel (a) shows the energy density of the operating modeiast@h of distance
from core center at two different wavelengths. The solid (blue) lineassmts the energy
distribution at 1.55um, which is in the center of the operating band and the dotted (red)
line represents a wavelength on the other side of the anticrossing. Tiealblack line
represents the core radius. Panel (b) shows the dispersion curveoistiignaling the two
wavelengths for which the energy distributions can be found in panel 9a)

4.3. Discussion

The fact that a large part of the power in the operating modiecalized in the defect for the
wavelengths of interest means that the operating mode iispersion-compensating fiber will
“see” more of the properties of the materials in the dielectrirrors than the operating mode
of the long-haul fiber does. Therefore, the performanceefitier (such as the figure of merit,
defined as dispersion parameter divided by losses per ugjtHeof this fiber will be affected
much more by material parameters than is the case for thetedeée fiber. Because some
possible high-index material candidates have quite higlogdtion losses and nonlinearities,
the resulting fiber losses and nonlinearities experieneedipit length of fiber will be larger
than for silica-based dispersion-compensating fibers.dv¥ew since the dispersion parameter
of the OmniGuide dispersion-compensating fiber is appretéty three orders of magnitude
larger than those of silica based dispersion-compenshliars, we can tolerate losses per unit
length that are much higher than in such fibers.

To make specific predictions about the loss and nonlinedoeance, we need to make
assumptions about the inherent material properties. Gbatide glasses, an attractive high-
index material, have losses ranging frevd00 dB/km to thousands of dB/km [39], therefore
a loss of 400 400 dB/km seems realistic. If one uses silicesgia the low-index material, its
contributions to the absorption losses will be negligiklsing these numbers we will now cal-
culate the figure of merit; we employ a fiber structure with #edein the fourth innermost layer
that is twice the thickness of an ordinary high-index layett, rescale the entire structure (ie,
change the dimension of the scaling paramajeso that the operating wavelength (1.586)
is at the point of maximum negative dispersion parametet this point,D=-54,200 ps/nm-
km and the material absorption is 45 dB/km, giving a figure efitrof 1200 ps/nm-dB. The
large absorption losses reflect the fact that in this dispersompensating fiber the operating
mode has a substantial presence in the defect. Alterngtifele operate the fiber in the re-
gion where its slope is matched with Corning’s LEAF fiber, weain a figure of merit of
246 ps/nm-dB (the figure of merdicross a banghere 40 nm, is defined as the maximum dis-
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persion divided by maximum losses). If one could reduce bblorption losses to 100 dB/km
(for instance through more careful selection of high-indeaterial and better materials pro-
cessing), the FOM would increase to 984 dB/nm-dB. For coiapay commercially available
dispersion-compensating fiber modules have figures of magting from 50 to 200 ps/nm-dB.

In the calculations above, we assumed that there were naloatiins to losses due to ra-
diation, even though for a finite number of layers some powi#reak out. However, for the
dispersion-compensating fiber design we find that at u®fadding a single bilayer will de-
crease the losses by a factor six, and one can thereforevadmgitrarily low radiation losses
by using a sufficiently large number of layers. Using onlytthiayers we obtain losses that are
below 1 dB/km, which is so far below the absorption lossestti@losses due to radiation are
negligible.

5. Design of zero-dispersion transmission fibers

Thus far in this work, we have focused on exploiting the fléitibof the OmniGuide fiber
structure to create a fiber that can compensate the dispeasimtumulated in transmission
fibers. A more appealing way of addressing the problem ofedg@pn than the addition of
dispersion-compensating devices to transmission systenkl be to eliminate the dispersion
in the transmission fibers themselves. This strategy has wakely employed using the Zero
Dispersion Shifted Fibers. These are single-mode silaset transmission fibers whose index
profile has been tailored such that the waveguide dispeesidnmaterial dispersion balance
each others exactly. However using such fibers in DWDM systeassproblematic, because
zero dispersion enhances interchannel nonlinear effacts & four-wave mixing. Therefore,
to avoid the nonlinear effects in silica fibers, modern traission systems employ fibers with
a small, positive dispersion parameter, which necessitligpersion compensation.

The OmniGuide fiber structure offers a different and far nagrpealing solution to the prob-
lem: the OmniGuide transmission fibers have nonlinearttias are four orders of magnitude
lower than those of silica fiber, and therefore operatindfither at or near zero dispersion is
feasible, even for multichannel systems with low channatsm. Unfortunately, the OmniGu-
ide long-haul fiber does have a positive dispersion pararoetthe order of 7-10 ps/nm-km, as
Fig. 5 shows. It would therefore be beneficial to modify theige of this fiber to achieve zero
dispersion. We do this by changing the thickness of a fewafrihermost layers so as to allow
some power to penetrate into the cladding, like in the dEparcompensating fiber. The result-
ing structure is equal to the structure of the long-haul fieecept that the odd numbered layers
have low index, layer 1 has thickness 0.288 (instead of 0.358m) and layer 2 has thickness
0.137um (instead of 0.153:m). All layers outside these two innermost layers have tineesa
dimensions as the long-haul fiber, as governed by the grazaidence quarter-wave condition
of Eqg. 7. However, we choose to operate this fiber at the wagéheof zero dispersion. At this
wavelength, less than 0.1% of the power penetrates intol#loieling, and therefore the losses
and nonlinearities of the cladding materials remain stiypagppressed. Absorption losses will
only be an order of magnitude larger than for the long-haekfiand because the nonlinearities
of the fiber are still governed by the nonlinear coefficienthed air core, the nonlinearity of
this fiber will only increase by a few percent. For power leuged in modern communication
systems, we therefore do not expect nonlinear effects oaia significant role.

Although the underlying reason for the modified dispersi@havior in this situation is
the same as in the dispersion-compensating fiber desigmaitéfestation is quite different,
in particular the dispersion parameter is shifted mariin@ompared to the changes in the
dispersion-compensating fiber). The difference is duedanthch stronger interaction between
the core and cladding mode, which causes a much more gradnaltion to the defect state.
The interaction is strong because the defect is in the twertaglosest to the core. Furthermore
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Fig. 13. Dispersion curves for OmniGuide zero dispersion fiber.IRapshows the disper-
sion of the zero dispersion fiber together with the OmniGuide long hauldimra broad
wavelength range. Panel (b) zooms in on the dispersion properti#isefaero dispersion
fiber over a 20 nm band.

the frequency of strongest interaction between the defecenand the operating mode is far
from the operating wavelength, and this reduces the effetheodefect further. The overall

result is thus a mode which strongly resembles the core mbdedefect-free structure, but

with slightly modified dispersion characteristics.

Achieving zero dispersion at a single wavelength is ofditthlue if the dispersion slope
around that point is large. We therefore design the Zerodgpn fiber to have as flat a disper-
sion slope as possible. The resulting dispersion curve edaund in Fig. 13. This curve has a
dispersion slope of 0.11 ps/fekm. Using a dispersion limit of [16]

B2.D-L<2-10° (10)

we can estimate the information carrying capacity as a fonaif fiber length for uncompen-
sated transmission. We find that the Zero Dispersion Fiberscgport 25 40 Gb/s channels
over a distance of 100 km, or it can alternatively support 20@Gb/s channels over 500 km.
We have here used a channel spacing of 100 GHz for the 40 Gjwalsind 50 GHz for a
10 Ghb/s signal. These are conservative estimates for thereglgchannel spacing, since the
low nonlinearities permit the use of modulation formatg thanimize the spectral width of the
signal.

As a more exotic example of the principle of tailoring disen properties by introducing
a defect, we show that by creating a fiber with a large defecateenmultiple points of zero
dispersion. This can be accomplished by making the defeldrge that it supports multiple
modes, as illustrated in Fig. 14. We see that between thenegif strong interaction between
the core and cladding mode, there are regions where the detmivative of the frequency
changes sign, and hence these will be points of zero digweBy making layer 1 a low-index
layer 9.9 um thick and using the regular structure defined by the quartarewcondition of
Eq. 7 outside this layer we obtain a defect that supports soymme= 0 defect modes within
the TE band gap that the fiber has eight points of zero dispgras Fig.15 illustrates.

An important advantage of this fiber over other zero disperfibers, which further immu-
nizes the fiber against nonlinear effects, is that the diffepoints of zero dispersion in fact
have different group velocities. Therefore, if we would oke to operate one channel at each
point of zero dispersion, these different channels wouldimeract with each other with the
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Fig. 15. Dispersion curve for the OmniGuide multiple zero dispersion.fiber

strength of neighboring channels at zero dispersion; i the phase matching between the
different channels corresponds to that of a fiber with aneewély large dispersion parameter.
Thus, the difference in group velocity effectively prevefdaur wave mixing, whereas the low
nonlinearities of the core as well as the zero dispersiovamtgoroblems due to self phase mod-
ulation. Consequently the fiber provides good protectiires all types of Kerr nonlinearities.
Unfortunately, the large dispersion slopel6 ps/nm-km at the point of zero dispersion) of
the fiber significantly limits the amount of bandwidth eactozdispersion point could support.
Applying the same parameters as we did in the section on the ispersion Fiber, we find
that each point of zero dispersion could support one 10 Gtasreel over 500 km.

6. Conclusions

We have shown that the group-velocity dispersion of phatbandgap fiber can be tailored by
introduction of geometrical defects in the otherwise pettjeperiodic structure that guides light

within the fiber core. We presented several examples of silchihg that attain unprecedented
dispersion characteristics, by using exact theoreticshaus. Moreover, we have introduced a
powerful theoretical model, based on a “tight-binding”tpie of core/defect mode anticross-
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ings, which provides a basis for understanding and degjghia dispersion behavior of a wide
range of physical systems.

In the model system of a hollow-core OmniGuide fiber, whiclidgs light within Bragg
mirrors formed by concentric rings of two alternating dates, we have demonstrated sev-
eral unusual results. First, we designed a dispersion-easgiing fiber that attains dispersion
parameters of up to -500,000 ps/nm-km with the ability toahahe dispersion slope of an
arbitrary transmission fiber. Such a large dispersion patanenables dispersion compensa-
tion in 1/1000 the length of conventional compensating fib&toreover, the dispersion/loss
figure of merit exceeds that of contemporary systems by ufdotar of 5; even better values
could be obtained with future material developments fortphiz bandgap fibers. Second, we
designed a transmission fiber with a range of near-zero digpesufficient to transmit 200 10
Gb/s channels over 100 km without requiring compensatiooredver, this fiber design ex-
ploits the ability of hollow-core OmniGuide fibers to supgsematerial nonlinearity, to such an
extent that nonlinear effects such as four-wave mixing aggigible over the above-mentioned
transmission span. Third, we exploited the simple desigrciples provided by our anticross-
ing model in order to demonstrate a fiber with multiple fremgies having zero dispersion,
providing an interesting medium for wavelength-multigdxransmission.

We present the above designs within the theoretical framewafoa simple model involving
the interaction between the conventional core-guided raode “defect mode” confined by an
intentional defect introduced in the periodic photonigstal cladding. As viewed in a coupled-
mode (or tight-binding) framework, when the dispersiomatiehs of these modes intersect they
interact to form an anticrossing region, characterized bipap exchange in mode slope and
field pattern between the two modes. If the modes are weakdyacting (well separated),
this results in high dispersion, and in other cases one ctairobnusual tailored dispersion
characteristics. Not only does this model provide an imMeitinderstanding of the modal char-
acteristics obtained by an exact calculation, but it als&enalear the influence of different
structural parameters (“knobs”) that can be used to tundigpersion. Furthermore, these ba-
sic principles can also be applied to enhance the undeistaiod many other technologies
employed in contemporary transmission systems, inclutibeg Bragg gratings, etalons, and
W-shaped dispersion-compensating fibers.

Because our anticrossing picture expresses the fiber lmetes/ia composite of two much-
simpler waveguides that are already well understood, ondind a set of independent knobs
that control one waveguide at a time or the interaction otwwae The first knob is the depth of
the defect within the cladding, which controls the intei@estrength: the interaction decreases
exponentially, with a corresponding increase in dispersigth the depth, as can be seen from
coupled-mode theory. The second knob is the structure alefext, and in particular the size
of the defect layer: this shifts the frequency of the defeotden(and thus the anticrossing)
up and down proportionally to the size as understood by FRlerpt cavity theory. As is also
well understood from the Fabry-Perot theory, a sufficietahge defect will support multiple
defect modes, leading to multiple anticrossing, which wel@ted to obtain multiple disper-
sion zeroes. A third knob is the overall scaling of the stitet which by the scalability of
Maxwell's equations leads simply to a scaling of the wavgtba and field patterns. This knob
is particularly useful because it can be controlled dynaihiauring fiber drawing to fine-tune
dispersion slope and other characteristics. Finally, atetstanding of these knobs not only
permits design and tuning of the dispersion; it also deteesithe corresponding manufactur-
ing tolerances.
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