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Abstract: We present a method for dispersion-tailoring of OmniGuide
and other photonic band-gap guided fibers based on weak interactions
(“anticrossings”) between the core-guided mode and a mode localized in an
intentionally introduced defect of the crystal. Because the core mode can
be guided in air and the defect mode in a much higher-index material, we
are able to obtain dispersion parameters in excess of 500,000 ps/nm-km.
Furthermore, because the dispersion is controlled entirely by geometric
parameters and not by material dispersion, it is easily tunable by structural
choices and fiber-drawing speed. So, for example, we demonstrate how
the large dispersion can be made to coincide with a dispersion slope that
matches commercial silica fibers to better than 1%, promising efficient
compensation. Other parameters are shown to yield dispersion-free trans-
mission in a hollow OmniGuide fiber that also maintains low losses and
negligible nonlinearities, with a nondegenerate TE01 mode immune to
polarization-mode dispersion (PMD). We present theoretical calculations
for a chalcogenide-based material system that has recentlybeen experimen-
tally drawn.
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1. Introduction

1.1. Overview

OmniGuide fiber [1] is a new class of Bragg fiber [2] based on omnidirectional reflectivity [3].
In these fibers, as depicted in Fig. 1(a), a large, hollow coreis surrounded by a multilayer
omnidirectional mirror that confines light similarly to a hollow metallic waveguide [4]. Such
fibers have previously been explored for their potential to suppress the losses and nonlinearities
that inherently limit propagation within solid materials.Here, we address a different question,
that of tailoring fiberdispersionfor applications such as accurate dispersion compensationand
dispersionless transmission. In contrast to previous workon dispersion control in Bragg and
photonic-crystal fibers [5–10], we introduce a more generalconcept of designing dispersion
via interactions between the core-guided modes and modes localized within intentional defects
(e.g.Fabry-Perot cavities) in the multilayer cladding. In this way, we are not only able to ob-
tain extremely large dispersion parameters, but we also benefit from a set of easily understood,
independent “knobs” that one can adjust in order to tailor the functional form of the disper-
sion to suit particular needs. The strength of these knobs can also be interpreted as measures
of performance degradation due to manufacturing inaccuracies. Moreover, unlike traditional
silica fibers, in our fibers the intrinsic material dispersion is negligible, so the group-velocity
dispersion is controlled entirely via tunable geometric parameters.

The multilayer cladding of the fiber in Fig. 1 has a photonic band gap that confines light in a
certain frequency range determined by the periodicity. By changing the periodicity, or equiva-
lently the overall scale to which the fiber is drawn, one can guide light at selectable wavelengths.
Although the materials of the cladding may be highly lossy ornonlinear, these properties can
be suppressed by many orders of magnitude for the core-guided modes, which have almost
all of their fields within the hollow core. This permits a widerange of materials and wave-
lengths to be considered, including some that are not normally amenable to dielectric waveg-
uiding [11–13]—and, in particular, one can choose high index-contrast chalcogenide/polymer
combinations [12, 13] that lead to omnidirectional reflection. Omnidirectionality, while not
strictly required for guidance, is strongly correlated with a metallic waveguide-like regime in
which the light is almost entirely excluded from the cladding. In Section 2 we discuss the tools
that we use for calculating the behavior of such fibers, and inSection 3 we analyze the behavior
and theory of ordinary OmniGuide fibers.

Given any periodic photonic-crystal structure, one of the elemental building blocks for de-
signing new behavior is the introduction ofdefectsin the periodicity [14]. Such defects can
confine localized modes whose frequencies lie within the bandgap, for example the familiar
Fabry-Perot cavity mode [15] localized in an altered layer of a multilayer film (1d-periodic
crystal). Another kind of defect is the termination of the crystal itself, which can give rise to
surface states localized around the interface. We can create both sorts of localized defect modes
in an OmniGuide fiber by altering one or more of the periodic cladding layers, as depicted
by the second layer of Fig. 1(b). (Here, the layers are labeled “1,” “2,” etc.starting from the
innermost layer, as shown in Fig. 2.) Because such a mode is separated from the core by a
finite number of crystal layers, however, it caninteractwith the core-guided modes when their
dispersion curves intersect, forminganticrossingsthat have predictably and radically altered
dispersion. Section 3.2 discusses a simple model in which the qualitative behavior of anticross-
ings and their dispersion can be understood. This model allows us to define a set of “knobs”
that in Section 4 we apply to design a dispersion-compensating fiber and in Section 5 to design
two zero-dispersion transmission fibers.
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(a) (b)

R R

Fig. 1. (a) Defect-free OmniGuide fiber and (b) OmniGuide dispersion-compensating fiber.
(Not to scale.) The defect-free (“long-haul”) fiber consists of an aircore (R=15.35µm)
surrounded by consecutive layers of refractive index=1.5 (blue)and refractive index=2.8
(red) materials. In this fiber, all the high-index layers have the same thickness (0.153µm)
and all the low-index layers have the same thickness (0.358µm). The outermost region is a
thick layer that provides structural stability. The actual number of layersused is larger than
in this figure; in order to minimize radiation losses one would use 20 layers ormore. The
OmniGuide dispersion-compensating fiber is a modified structure that includes a defect,
i.e. the thickness of one of the dielectric layers has been altered.

CladdingAir core
Layer 1

Layer 3
Layer 5

Layer 2
Layer 4

Layer 6
Layer 8

Layer 7

Fig. 2. Nomenclature: “Layer 1” denotes the material layer closest to theair core, the next-
closest material layer is “layer 2,”etc.“Core” means the air core inside the dielectric mirror
and “cladding” means all layers outside the core. This figure is not drawn to scale and
includes a reduced number of layers.
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1.2. Fiber dispersion

The chromatic (group-velocity) dispersion of a fiber is usually quantified in terms of the dis-
persion parameterD, which is defined from the dispersion relation as [16]

D = −
2πc
λ 2 ·

d2β
dω2 , (1)

wherec is the speed of light,λ the vacuum wavelength,ω the angular frequency, andβ the
wave number.

In the telecommunications field there is tremendous interest in dispersion and dispersion
tailoring. A few years ago, the preferred strategy to avoid optical signal degradation due to
chromatic dispersion was to minimize the dispersion parameter of transmission fibers, and
thus fibers tailored to have zero dispersion at the operatingwavelength—dispersion-shifted
fibers—were invented [17]. Later, it was found that in order tosuppress nonlinear effects such
as four-wave mixing (FWM) in dense wavelength-division multiplexing (DWDM) systems,
some dispersion was necessary; the point of zero dispersionwas therefore shifted away from
the operating wavelength. Such nonzero Dispersion-shifted fibers (NZDSF), which are widely
used today, have a relatively low dispersion parameter whose value may strongly vary across
the transmission band. Because the fibers have a non-zero dispersion, it becomes necessary to
compensate the accumulated dispersion when transmitting over long distances or at high bit
rates [16].

Dispersion compensation is usually accomplished through the use of dispersion-
compensating fibers [18], which are fibers with a large, negative dispersion parameter. When
a pulse that has been broadened due to propagation through a transmission fiber with a posi-
tive dispersion parameter passes through a fiber with negative dispersion, it can be compressed
and regain much of its original shape. Absent other sources of signal degradation such as non-
linear effects, the pulse will fully recover its original shape when the lengthL and dispersion
parameterD of the transmission fiber(t) and dispersion-compensating fiber(d) obey:

Ld ·Dd +Lt ·Dt = 0 (2)

Creating a system where this equation is obeyed for a single wavelength is simple, as one can
always choose a length of the dispersion-compensating fiberthat will fulfill Eq. 2. However,
accurately compensating the dispersion across a wide band is more challenging becauseDt

often varies significantly across the wavelength windows used in modern telecommunication
systems, for instance varying from∼3 to∼6 ps/nm-km in Corning’s E-LEAF fiber. To enable
accurate dispersion compensation for multiple wavelengths, thederivativesof the dispersion
parameter with respect to wavelength for the dispersion-compensating and transmission fibers
must also match. Typically, higher-order derivatives of the dispersion parameter for transmis-
sion fibers are small, and therefore reduce this requirementto:

Ld ·
δDd

δλ
+Lt ·

δDt

δλ
= 0 (3)

Combining Eqs. (2) and (3) enables the definition of a reduceddispersion slopeR that must
be the same for the transmission fiber and the dispersion-compensating fiber, if the dispersion-
compensating fiber is to accurately compensate the dispersion of the transmission across a wide
band:

R=
1
D
·

δD
δλ

(4)

To perform accurate dispersion compensation, it is consequently necessary to tailor the dis-
persion properties of the dispersion-compensating fibers to attain the proper reduced dispersion
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slope. However, due to their small index contrast and simplegeometrical structure, silica fibers
offer limited opportunities for such tailoring. Bragg fibers, and especially those using a high
index-contrast, offer much more room for dispersion tailoring and this has already been applied
in several instances. Ferrando, Silvestre and Andrés [5] as well as Marcou, Brechet and Roy [6]
showed that one could balance the waveguide dispersion and the material dispersion in a low
index contrast Bragg fiber to create a fiber with zero dispersion over a wide wavelength range,
which yields a fiber with interesting nonlinear properties.Recently Ouyang, Xu and Yariv [7]
showed that by combining a high index contrast and a small core, one can attain a large, nega-
tive dispersion parameter. The literature also offers numerous examples of dispersion tailoring
applied in the wider areas of photonic crystals [8] and photonic-crystal fibers [9].

Using defects to tailor the dispersion, as we propose to do inthis work, is advantageous
over applying a small core size as was done in [7] for several reasons. First, it enables a large
dispersion parameter for a large-core fiber, thus reducing nonlinear effects. Furthermore, we can
tailor the waveguide dispersion properties of the fiber at a much greater level of control, which
both enables the creation of dispersion-compensating fibers with highly customized dispersion
properties and opens up the possibility for other sorts of other dispersion tailoring, such as
zero-dispersion and multiple-zero-dispersion transmission fibers.

2. Theoretical tools

The tools used in this work are the same as in [1], and are basedon the transfer-matrix methods
developed by [2]. For waveguides that lie along thezaxis, we express the electromagnetic fields
in the form:

~F(r)ei(βz−ωt+mφ), (5)

wherem is the angular-momentum “quantum number” andβ is the (complex) wavenumber.
We use Maxwell’s equations to formulate the problem in termsof the longitudinal fields (Ez

andHz) for a given(m,β ,ω). The fields in each layer are expanded in Bessel functionsJm(k j r)

andYm(k j r) with k j ≡
√

n2
j ω2/c2−β 2:

Hz = AJ+BY (6)

Ez = CJ+DY

This yields a set of four coefficients (A, B, C and D) that describe the field in each layer. By
matching the tangential field components across the boundaries between consecutive layers,
we obtain a transfer matrix [2] that yields the coefficients in one layer as a function of the field
in neighboring layers. The product of the transfer matricesfor each layer yields a single 4×4
transfer matrix that relates the fields in the core to the fields in the outermost layer. By applying
the boundary condition of zero incoming flux at the outermostlayer [19], we obtain the eigen-
modes of the system including both guided and leaky modes. The advantage of this approach
over other methods often used to characterize optical fibers(for instance beam propagation
methods or plane-wave based mode solvers [20]) is that the method exploits the cylindrical
symmetry of the system to achieve high efficiency, making it easy to perform parameter ex-
ploration and optimization. The method has been verified to produce the same results for both
the real and the imaginary part ofβ as more computationally demanding, generic methods.
Combined with perturbation-theory techniques that are suitable for high-index contrast sys-
tems [21–23], the method is also an excellent starting pointfor describing systems that do not
exhibit complete cylindrical symmetry [1].
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3. General principles

3.1. OmniGuide fiber without defects

In this section we will summarize the key features of the OmniGuide long-haul fiber (the defect-
free fiber), which was introduced in Ref. [1]. This fiber consists of an air core surrounded by
a cladding of consecutive layers of high and low index materials. The relative thickness of the
layers is chosen according to the grazing-incidence quarter-wave condition [24]:

dhi

dlo
=

√

n2
lo −1

√

n2
hi −1

(7)

whered is the layer thickness,n is the index of refraction, andhi/lo signify high/low-index
layer.

In [1], a system with indices of refraction of 1.6 and 4.6 along with an air core of index
1 was used, while we will here use indices of 2.8 and 1.5 since these indices correspond to
more recent experimental systems [12, 13]. For these indices, Eq. 7 yieldsdhi = 0.30a and
dlo = 0.70a, wherea= dhi +dlo is the thickness of a bilayer. For the long-haul fiber, we use the
high-index material in the odd-numbered layers, because the reflectivity of the dielectric mirror
increases when the innermost layer is high-index.

Since Maxwell’s equations are linear and scale-invariant,it is convenient to express all dis-
tances in units ofa, all angular frequencies in units of 2πc/a, and all wavenumbers in units of
2π/a. Only when calculating physical quantities (such as the dispersion parameterD) is it nec-
essary to match the parametera to an absolute length scale. We choose the value ofa so that the
dielectric mirror provides maximum confinement for the central wavelength in the transmission
band. For instance, if we want to transmit across the 40 nm C-band of long-haul telecommu-
nication systems, we choose ana of 0.51µm to provide maximum confinement around 1550
nm.

The band structure (dispersion relation) for the lowest-order modes of the OmniGuide Long-
Haul fiber is illustrated in Fig. 3. In Fig. 3(a), we have plotted the edges of the transverse
electric and magnetic band gaps together with the light lineof air (ω = βc), where we define
TE/TM polarization as having electric/magnetic field in theplane transverse to the direction
of propagation. Pure TM modes are confined by the TM band gap while pure TE modes are
confined by the wider TE band gap. However, for modes with an angular quantum number
larger than zero, the modes are hybridized with both TM and TEcomponents. Therefore, the
magnitude of the TM band gap determines the available bandwidth for transmission in these
modes. Moreover, even for a pure TE mode, operation outside the TM gap may be problematic
due to radiative coupling via fiber imperfections. When determining the available bandwidth,
we thus consider the frequency rangealong the light linethat is inside the TM band gap, since
our operating mode is very close to the light line. Normally,when plotting a band diagram, one
would just include the fiber bands in the figure that displays the band edges. However, because
the large core places the bands of interest extremely close to the light line (β = ω/c), we instead
plot the bands separately in Fig. 3(b), where we plot the frequency (ω/c) minuswavenumber
(β ) as a function of wavenumber. The proximity to the light linecan be appreciated by noticing
that the scale on they axis of this plot is two orders of magnitude smaller than the scale of the
x axis.

The strong confinement in the fiber core, as illustrated by Fig. 4, makes it natural to label the
modes in the diagram in analogy with metallic waveguides. Incontrast, the near degeneracies
in weakly guiding silica fibers that enable the “LP” mode labeling [25] do not apply to our
fiber. Unlike the metallic nomenclature, we labelm 6= 0 modes HE or EH instead of TE or

(C) 2003 OSA 19 May 2003 / Vol. 11,  No. 10 / OPTICS EXPRESS  1181
#2267 - $15.00 US Received March 24, 2003; Revised  April 25, 2003



0 0.300.1 0.320.2 0.340.3 0.360.4
−2.0

0.5

−1.5

0

−1.0
0.1

−0.5
0.2

0.0

0.3 0.5

0.4

1.0

0.5

1.5

2.0
x 10

Wavenumber 

−3

β (2π/a)

F
re

q
u
e
n
c
y
 

Wavenumber β (2π/a)

ω

ω

/c
−

/c
−

β

β

 (
2

 (
2

π

π

/a
)

/a
)

−    Light Line 

− Light Line 

ω

ω

=

=

cβ

cβ

−− TM band gap

−   TE band gap

x HE
21

−− TM
01

o HE
11

∇  EH
21

− TE
01

EH* 11
*

(b)(a)

Fig. 3. (a) Band gaps and light line for OmniGuide long-haul fiber and (b) dispersion rela-
tions for the lowest-order modes.
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shows the degree of confinement across the TE band gap, while the solidpart of the curve
indicate the part that is within the TM band gap (1430–1830nm) as well as theTE gap.

TM, since the higher order modes are not strictly transverseelectric or magnetic due to finite
penetration into the cladding. We apply the HE/EH label roughly according to whether the
TE/TM component is dominant, as described in Reference [1].For a more detailed discussion
of the modal structure of the OmniGuide fiber, see Reference [26].

Just as in a metallic waveguide, the lowest-loss mode is the lowest-order, circularly-
symmetric, “azimuthally polarized” TE01 mode. With only 17 layers (8.5 bilayers) surrounding
the hollow core, the radiation losses of the TE01 mode becomes<0.001 dB/m! Due to its strong
confinement in the core, the mode exhibits dramatic suppression of the nonlinearities and losses
of the cladding material [1]. For instance, across the entire operating band, the absorption losses
for the TE01 mode here are at least 40,000 times smaller than the bulk absorption losses of the
materials. Thus, to limit the absorption losses to 0.01 dB/km, one can use materials with a
bulk absorption of up to 400 dB/km, greatly expanding the material-design flexibility. Acces-
sible materials include high-index chalcogenide glasses,which have recently been co-drawn in
fibers together with polymers with a low index of refraction [12, 13]. Reference [13] demon-
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Fig. 5. Dispersion parameter for the TE01 mode in the OmniGuide long-haul fiber, where
the solid part of the curve indicates the range that is within the TM band gap. Within the
TM band gap the dispersion parameterD ranges from 7.5 to 11.4 ps/nm-km.

strates experimentally that OmniGuide fibers can suppress bulk absorption losses by up to four
to five orders of magnitude at 10µm, from bulk polymer losses of 10,000-100,000 dB/m to
propagation losses of less than 1 dB/m.

The dispersion properties for the OmniGuide long-haul fiberover the wavelength range avail-
able for transmission can be found in Fig. 5, where we have plotted the waveguide dispersion
as a function of wavelength. The strong concentration of themode in the core explains why the
material dispersion becomes negligible (less than 1% of thetotal). The figure illustrates that the
fiber has dispersion values that are comparable to those of non-zero dispersion-shifted fibers
(between 7.5 and 11.4 ps/nm-km within the TM gap), and that the dispersion slope is very low
(averaging 0.01 ps/nm2-km, which is an order of magnitude smaller than the slope of Corning’s
E-LEAF fiber).

The favorable performance parameters of the TE01 mode may be reduced by fiber imper-
fections (such as surface roughness, bends and ellipticity), which can cause coupling to more
lossy modes. (Due to the large core and the high index contrast, the fiber supports a substan-
tial number of higher-order modes.) Coupling to these higher order modes will not result in
modal dispersion as it does for multimode silica fibers, however, since the higher-order modes
have substantially higher losses than the TE01 mode, making the fiber effectively single mode,
similar to what was observed in metallic waveguides. Nevertheless, mixing/leakage due to im-
perfections may become the dominant loss mechanism.

3.2. OmniGuide fiber with defects

The dispersion relation of the OmniGuide fiber can be significantly altered by introducing a
geometric defect—a change in thickness of one (or more) cladding layers—into the otherwise
periodic mirror structure. In this section, we introduce a simple model that can explain the
qualitative effects of such defects.

The introduction of a geometrical defect leads to the formation of a “defect mode” similar to
the situation in doped semiconductors. The energy of this mode is substantially localized within
the defect itself, and its dispersion relation is situated inside the band gap, and a large portion
of it is below the air light line. At points in the band diagramwhere the defect mode would
intersect with a core mode of the same azimuthal symmetry (∆m= 0) and (form= 0 modes)
the same polarization, the defect mode may interact with thecore mode. Thus, instead of the
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Fig. 6. Schematic representation of the effect of interaction between defect and core modes.
Panel (a) shows the dispersion relations for the two modes without interaction and panel
(b) shows how modal interaction changes the dispersion relations.

core mode and the defect mode crossing one another, the fiber mode will be “transformed” into
a defect mode, and vice-versa, over a certain frequency range. Such band features are called
“anticrossings” in solid-state physics [27]. In Fig. 6 we have made a schematic representation of
this process. In Fig. 6(a) we see the dispersion curve for a core mode and a defect mode without
interaction. The slope (group velocity) of the defect mode is much smaller than the slope of the
core mode, because the group velocity for a mode localized ina medium of high refractive index
(vg ∼ c/n) is much lower than for a mode localized in the core (vg ∼ c). This difference in group
velocity makes the modes likely to intersect and implies a strong dispersion (rapid slope change)
in the resulting anticrossing. Fig. 6(b) illustrates the effect of modal interaction, where the two
modes no longer cross one another and instead the “core mode”changes its nature to become
a “defect mode” and vice versa. In the transition region, thecore mode radically changes its
group velocity (approximately fromc to c/n), which is synonymous with that mode having a
large dispersion parameter in that frequency range. Figure12(a) illustrates the transition from
a core-confined to a defect-confined mode.

Quantitatively we can describe anticrossings in terms of coupled-mode theory [28, 29],
whereby we can determine many features of the interaction byevaluating the coupling between
the core and the defect modes, in direct parallel with the tight-banding approach in solid-state
physics (see e.g. [27]). While such theory in principle can accurately describe the interactions of
our system, it is in practice hard to make accurate predictions about dispersion values, because
in our system it is unclear precisely what constitutes the “uncoupled” systems. Nevertheless,
coupled-mode theory may be of great benefit for predictingchangesin dispersion values due to
modifications to the fiber structure and we will use it with modest success to predict the effect
of changing the location of the defect layer.

The magnitude of the frequency range over which the transformation takes place depends on
the strength of the interaction between the fiber mode and thedefect mode, or in other words
the degree of overlap between the fields of the two modes. If the interaction is weak, which
will be the case if the defect is located far from the core, thefrequency range over which the
transition occurs will be narrow, resulting in sharp kinks in the dispersion relation for the given
mode, as illustrated in Fig. 7(a). On the other hand, if the interaction is strong, the transition
will take place over a broader frequency range and the kinks will be smoothed, as illustrated in
Fig. 7(b). Since the dispersion parameterD is proportional to∂ 2ω/∂β 2, stronger interaction

(C) 2003 OSA 19 May 2003 / Vol. 11,  No. 10 / OPTICS EXPRESS  1184
#2267 - $15.00 US Received March 24, 2003; Revised  April 25, 2003



WavenumberWavenumber

F
re

qu
en

cy

F
re

qu
en

cy DefectDefect
likelike DefectDefect

likelike

Core Core
like like

CoreCore
likelike

Weak interaction Strong interaction

Smaller DLarger D

(a) (b)
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translates into lower dispersion values.
Independent of the strength of the interaction, we find that the resulting product of dispersion

parameter and wavelength range over which we achieve this dispersion parameter, i.e. the area
A under the dispersion curveD(λ ) around the anticrossing, is only a function of the difference
in 1/vg between the core and the defect mode:

A =
∫ 2

1
Ddλ =

∫ 2

1

∂
∂λ

(

1
vg

)

dλ = ∆
(

1
vg

)

=
1

vg,1
−

1
vg,2

(8)

This equation allows one to make simple predictions about the attainable dispersion charac-
teristics. In our fiber, the anticrossing reduces the group velocity fromc to c/2.8, which gives
A= 1.8/c= 6·106 (ps/nm-km)·(nm). For a wavelength range of 40 nm, the formula thus yields
an averageD of about 150,000 ps/nm-km. However, slope matching requirements, which we
discuss later, reduce the usable area by a factor of 3-10, resulting in an average dispersion
parameter of 15,000-45,000 ps/nm-km over a 40 nm band.

The frequency at which the modal interaction takes place depends strongly on the frequency
range at which the defect mode itself exists. This frequencyrange, in turn, depends strongly
on the size of the defect. Therefore, if we want to shift the frequency of modal interaction
up or down, we can easily accomplish this by decreasing or increasing the size of the defect,
respectively. Thus, we find that size and location of the defect provide us with two “knobs” that
can be used to tailor the dispersion properties of the fiber inintuitively predictable ways.

Through the use of more complex defects, we can further modify the properties of the fiber.
This could be accomplished by using multiple defects or by using a single defect that supports
multiple defect modes. If we use a rather large defect, then this defect would support multiple
modes and this would enable the interaction with the core-confined modes at multiple wave-
lengths. For the dispersion-compensating fibers presentedin Section 4 we will mainly restrict
ourselves to the use of a single, rather small defect, while we in Section 5 will demonstrate that
the use of a defect that supports multiple modes can be used for creating a fiber with multiple
points of zero dispersion.

The model for modal interactions presented here is only exact in the limit of weak interac-
tions. For systems with stronger interactions between the modes it is imprecise to consider the
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fiber and the defect as two separate systems whose resulting band diagram is the sum of the
band diagram of the fiber and the defect separately. Furthermore, the simultaneous interaction
between the defect and multiple bands may also alter the entire band diagram. So, the real
band diagram for the fiber with a defect must be calculated using exact methods such as those
described in Section 2. Nevertheless, the qualitative features of the anticrossing model remain.

So far, we have considered only the interaction of the defectmode with the lowest order core
mode. In fact the defect mode alters the behavior ofall modes that have the same azimuthal
symmetry and polarization as the defect mode. In Fig. 8 we have illustrated this by plotting a
more realistic picture of the band structure. In Fig. 8a we have schematically plotted the three
lowestm= 0 modes (in red) together with one defect mode (in blue). For reference we have
also included the light line in air (β = ω/c), which illustrates that the defect mode is below
the light line for a substantial part of its frequency range.In Fig. 8b, we see the effect of the
interaction between the defect mode and the core-confined modes. For low frequencies, the
three core-confined modes are all located above the light line and they strongly resemble the
modes of the OmniGuide fiber without defects. As the frequency increases, the lowestm= 0
mode, the TE01 mode, starts interacting with the defect mode. The TE01 mode changes its
character towards the defect mode (transforming from A to C). Around the same frequency
the next lowestm = 0 mode, the TE02 mode, changes its character, and it starts to resemble
the TE01 mode (transforming from B to D). For higher frequencies, themode which at lower
frequencies was almost identical to the TE02 mode is now almost completely identical to the
TE01 mode of the defect-free OmniGuide fiber. We thus see that the defect mode can induce
a transition from one core-confined mode to its neighboring core-confined mode. This change
continues for all higherm=0 modes, and we therefore see that the presence of the defectmakes
all the core-confined modes take a “step down” around the frequencies where the defect mode
crosses the dispersion curve of the core-confined modes. Transitions between core-confined
modes can give large dispersion values useful for dispersion compensation. Such a mode has a
frequency region of large negative dispersion followed by aregion of large positive dispersion.
This might be useful for certain dispersion-compensation schemes.

The model discussed above can also explain several interesting features of the defect-free
OmniGuide fiber, whose dielectric mirror is perfectly periodic as in Fig. 1(a). For this struc-
ture, the termination of the periodic layers is itself a “defect” that can support a localized state,
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known as a surface state [14]. The interior surface of the OmniGuide long-haul fiber of Sec-
tion 3.1 supports such a state and this can be seen in the dispersion relation of Fig. 3. For
example, the HE11 mode undergoes an anticrossing similar to the lowest mode inFig. 8, and
therefore transitions to a surface state underneath the light line, while the EH11 mode undergoes
a transition like the second-lowest mode in Fig. 8 to become HE11-like. In this case, the states
do not include anm = 0 TE mode, so the TE0l modes are not affected. (This is because the
“pure” defect mode of a flat surface would be a TM mode.)

The large dispersion parameters at the edges of the band in Fig. 5 for the TE01 mode of the
OmniGuide long-haul fiber can also be understood in light of the anticrossing model. When the
mode reaches the edges of the gap, there is an interaction with the continuum of cladding modes
that leads to high dispersion. (This is only a rough picture,since the core/cladding modes do
not remain weakly interacting.)

Examples of silica-based systems in which mode dispersion can be attributed to anticrossings
include fiber Bragg gratings [30] (FBGs) and W-profile dispersion-compensating fibers [31]. In
FBGs, the periodic index modulation (1D photonic crystal) creates a band gap via an anticross-
ing between forward and backward propagating modes at the Bragg wavelength, leading to
strong dispersion effects. The strength of the interactionbetween the forward and backward
propagating modes is determined by the strength of the indexmodulation, and stronger modu-
lation gives lower dispersion over broader bandwidth, in accordance with Eq. 8. Exploiting the
band-edge in FBG and similarly in etalons (thin-film filters)- often by putting multiple filters
in sequence, enables very accurate dispersion control across a wide band. [32, 33]. So-called
W-shaped DCFs have a W-formed index profile: a high-index core is surrounded by a low-index
ring, and outside of this ring there is another ring of high index, which is finally surrounded by
a low-index cladding. Thus, light can be index-guided in either the high-index core or the high-
index ring. Due to the different effective indices in the core and in the high-index ring, modes
confined in those two regions core will have different group velocities. Due to interaction be-
tween the modes, the anticrossing creates a mode which transforms itself from being confined
in the core to being confined in the high-index ring over a certain frequency range, and in this
transition region the mode exhibits a very large dispersion; and this has been demonstrated both
theoretically [31] (-5100 ps/nm-km) and experimentally [34] (-1800 ps/nm-km). However, be-
cause the difference in effective index between the high-index core and the high-index ring is
at most on the order of a few percent, the dispersion parameter will be much lower than in an
OmniGuide dispersion-compensating fiber.

4. Design of dispersion-compensating fibers

Having concluded on general principles that the OmniGuide fiber structure offers an oppor-
tunity to obtain a large dispersion parameter, we turn to thedesign of an actual dispersion-
compensating fiber. In Section 4.1 we demonstrate that we canuse this structure to create a fiber
with remarkable dispersion magnitudes and show how to tailor the dispersion. In Section 4.2,
we discuss the important issue of coupling between this dispersion-compensating fiber and
silica-based transmission fibers. In Section 4.3 we consider the impact of material parameters
on the performance of the fiber.

4.1. Optimizing performance parameters

When tailoring the dispersion properties of the fiber, we mainly make use of three “knobs:” the
location of the defect, the size of the defect, and the overall scaling of the structure.

The significance of the location of the defect can easily be understood by analyzing the
defect-core interaction model with coupled-mode theory. If, using Dirac notation, we describe
the operating mode (field pattern) of the defect-free fiber as|ψ1〉 and of the defect mode as|ψ2〉,
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then by substituting± (bonding/antibonding) combinations of these states into the variational
theorem (or, equivalently, using first-order perturbation/coupled-mode theory), one finds that
the frequency splitting is proportional to the inner product:

∆ω ∼ ℜ
〈

ψ1 Ĥ ψ2
〉

(9)

whereĤ is a coupling operator (the “Hamiltonian” operator of the combined system). This
inner product has two main contributions, from the exponential tail of |ψ1〉 in the defect (peak
of |ψ2〉) and vice versa.

Calculations show that in the dielectric mirror, the field decays by approximately a factor
of three for each bilayer. Therefore, the contribution to the split from each of the two terms
mentioned above should decay by approximately a factor of three if we separate the defect and
the core by an additional bilayer. However, the sum of these two terms will not necessarily
decay by exactly a factor of three, because the relative phase of these two terms can change;
this will induce an oscillation in addition to the overall exponential decay of the splitting, as
seen below.

It then follows that the increased dispersion at the anticrossing is inversely proportional to
∆ω, and thus increases exponentially (plus some oscillation)with the depth of the defect as seen
in table 4.1. This is due to the fact that the∆β width of the anticrossing region is proportional
to ∆ω, combined with Eq. 8.

In Figs. 9(a) and (b) we show exact calculations of the dispersion relation and the dispersion
parameter as a function of wavelength for four different locations of the defect: the second,
fourth, sixth, or eighth layer. In all cases, we create the defect by making one high-index layer
twice as thick as all the other high-index layers. The thicknesses of all remaining layers are cho-
sen according to the grazing-incidence quarter-wave condition of Eq. 7, such that all remaining
high-index layers have the same thickness and all low-indexlayers have the same thickness.
Since an even-numbered layer has the high-index value, the innermost layer here is low-index.
In Fig. 9(a), we have indicated the point of minimum dispersion parameter for each of the
dispersion curves from Fig. 9(b) with a dot.

Table 1. The dispersion increase at an anticrossing is roughly proportional to the amplitude
of the exponential field tails as a function of defect location, causing the product of the two
to be roughly constant (with some oscillation).

Defect layer 2 4 6 8 10 12

Max field (arb. units) 0.51 0.22 0.092 0.039 0.017 0.0070
D (ps/nm-km) -45,000 -51,100 -159,000 -511,000 -1.45M -2.14M
D ·max field (arb. units) 23,000 11,000 15,000 20,000 23,000 15,000

Furthermore, the plots reveal that we can obtain extremely large dispersion parameters,
around -500,000 ps/nm-km, by placing the defect in the eighth innermost layer. These values
are more than three orders of magnitude larger than the dispersion parameter of contemporary
dispersion-compensating fibers and four to five orders of magnitude larger than the dispersion
in most transmission fibers. Thus, the dispersion accumulated from the propagation through
10 km of transmission fiber can be compensated by propagationthrough approximately 1 me-
ter of these dispersion-compensating fibers. Because the values we attain for the waveguide
(geometric) dispersion are so large, we need not consider the small contribution from material
dispersion. Fig. 9(a) also shows that the point of minimum dispersion parameter for all four
curves is below the light line (ω/c=β ). We will further discuss the consequences of the mode
being below the light line in Sec. 4.2 and 4.3.
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Fig. 9. Dispersion relation (a) and dispersion curve (b) for four different locations of the
defect. Both curves show that the transition from core-confined mode tothe defect mode
takes place more rapidly when the defect is located far from the core which results in a
large negative dispersion parameter over a narrower band. The point of minimum dispersion
parameter is indicated with a dot on the dispersion relations.

By locating the defect deeper in the mirror, we obtain a higher dispersion parameter value
over a narrower band. Consequently, the slope of the dispersion curve is also greater the deeper
we bury the defect. Thus, when choosing how far away from the core to place the defect, we
do so to ensure that the reduced dispersion slope approximately corresponds to the slope of
the transmission fibers whose dispersion we want to compensate. If we, for instance, want
to compensate the dispersion of Corning’s E-LEAF fiber, whose dispersion slope makes the
dispersion parameter double across the 40 nm C-band, we choose to locate the defect in the
fourth layer from the core. With the defect in this layer, theslope of our fiber corresponds fairly
well with the slope of the E-LEAF fiber over a wavelength rangewell in excess of the C-band.

In order to fine-tune the performance of the fiber, we turn to the second knob we have at our
disposal: the size of the defect. The purpose of this fine tuning is to ensure that the reduced
dispersion slope of the dispersion curve accurately matches the slope of the target transmission
fiber. For instance, upon inspection of the dispersion curvefor the structure with its defect
in the fourth layer in Figure 10, we find that the reduced dispersion slope of the OmniGuide
dispersion-compensating fiber at 1530 nm matches the reduced dispersion slope of Corning’s
E-LEAF fiber at 1550 nm. We would thus like to “move” the dispersion curve for this fiber by
20 nm. By coupled-mode theory, we would thus like to increasethe the resonance wavelength
of the defect mode by approximately 1.5%. If we assume the resonance mode of the defect is
the lowest mode of the defect and model it as a Fabry-Perot cavity surrounded by metallic walls,
simple analysis shows that we can increase the resonance wavelength by 1.5% by increasing
the width of the cavity by 1.5%, and we indeed find that such an increase in the width gives
the predicted effect, as illustrated in Fig. 10. Having tuned the thickness of the defect layer,
we obtain a fiber whose slope matches the slope of Corning’s E-LEAF fiber to a precision
that exceeds the variations in the slope due to fiber manufacturing inaccuracies and seasonal
variations in temperature [35].

This sensitivity to small changes in the thickness of the defect layer can place high demands
on manufacturing tolerances, which could result in low production yields. We can address this
problem by exploiting a third knob, namely the possibility of varying the thickness of all layers
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Fig. 10. Dispersion curve for two slightly different sizes of the defect. The defect for the
red curve is 1.5% larger than the defect for the blue curve.

via overall scaling, controlled via the fiber drawing speed.Because of the sensitivity of dis-
persion properties for photonic-band-gap fiber with defects to variations in layer thickness, the
needed rescaling would be very small, and we would thereforenot expect significant degrada-
tion of any specifications for the outer diameter.

The effect of rescaling the fiber dimensions is to change the scaling parametera, which
shifts the entire dispersion curve proportionally to the change ina. For instance, an increase in
dimensions by 1% will translate the dispersion curve by 15 nmtowards the longer wavelengths
and therefore decreases the reduced dispersion slope in theregion where the dispersion slope
is negative. In addition to translating the dispersion curve (changing the x-scale of Fig. 10),
a change ina also changes the y-scale of the dispersion curve: the value of the maximum
dispersion parameter changes inversely with the change ina.

We can also change the thicknesses of multiple dielectric layers independently, for instance
if further fine-tuning of the dispersion properties is desired. The use of multiple defects could
create multiple regions of high dispersion, and by exploiting multiple defects these regions can
be placed at arbitrary frequencies relative to one another.Using a single, large defect would
create multiple regions of high dispersion with a nearly fixed frequency spacing between them.
We do not, however, exploit the simultaneous use of multipledefects in this paper.

Finally, we can also alter many properties of the fiber by changing the size of the core. We
find that the dispersion properties of the fiber remain surprisingly constant with core diameter,
however, in the regime of interest for us (negative dispersion slope). This is because the contri-
bution to the dispersion from the core size isDcore∼ 1/R2 [1], so only for very small values of
Rdoes this become significant. This mechanism explains the large dispersion in small core-size
fibers observed by Ouyanget al. [7].

To give a specific example of the effects of core size in OmniGuide fibers with defects, Fig.11
shows the dispersion curve for two fibers whose only difference is that one has a core radius
of 14.8 µm while the other’s core is six times smaller,R= 2.47 µm. The properties that are
most strongly affected by changing the core area are the nonlinearities and intermodal coupling
by fiber imperfections. As we reduce the core area, the effective modal area is reduced, which
increases any nonlinear effects. Because the defect mode ismainly located around the ring
defined by the defect, we find that the modal area islinearly proportional to the core radius
(and not proportional to the square, as it is for core modes).
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Fig. 11. Dispersion curve for two different core sizes, the large core(red) having a core
radius of 14.8µmand the small core (blue) having a radius of 2.98µm.

4.2. Coupling

In order to induce a dispersion that is three orders of magnitude larger than the dispersion of
silica-based dispersion-compensating fibers, we change the nature of the operating mode radi-
cally across the band where the mode is confined. At the lowestfrequency (longest wavelength)
the mode resembles the operating mode of an OmniGuide long-haul fiber, a metallic-like TE01

mode which in our dispersion-compensating fiber has more than 99.5% of its power in the core.
This mode is located above the light line, and thus the confinement of this mode is entirely pro-
vided by the photonic band gap of the dielectric mirror surrounding the air core. At the higher
frequency, which is where we in fact operate the fiber to obtain dispersion-slope matching, the
mode profile is radically different, with most of the power located in the vicinity of the defect
layer. The mode is located well below the light line and therefore is confined relative to the air
core by index guiding. In the outer direction the field is still confined by the photonic band gap.
This mode is therefore a good example of a surface state [14].The difference in modal profile
is illustrated in Figure 12 where we see the modal fields at a low frequency (corresponding to a
wavelength of 1.75µm) and at a higher frequency (corresponding to a wavelength of1.55µm).
These frequencies lie at either side of the frequency regionwhere the anticrossing occurs.

The operating mode has a profile very dissimilar from that of any transmission fiber, so it
is nearly impossible to couple directly between the two. In order to obtain efficient coupling,
one may introduce an initial taper in the disperson-compensation fiber (a common technique
for coupling to modes with unusual profiles [36]). By decreasing all the dimensions of the fiber
by approximately 13%, the field profile of the operating mode will resemble the TE01 mode
of the OmniGuide long-haul fiber. We can thereby couple directly to a tapered version of the
dispersion-compensating fiber from the OmniGuide long-haul fiber to compensate dispersion
accumulated in the latter.

If one wants to compensate the dispersion accumulated in contemporary silica transmission
fibers, it is also necessary to convert the linearly polarized operating mode of single-mode
silica fibers (the LP01 mode) into the TE01 mode. This can be accomplished, for example, by
two steps. First, one butt-couples from silica fibers into the HE11 mode of the OmniGuide fiber,
a process which is simple due to the strong similarity between the HE11 of OmniGuide’s fibers
and the LP01 mode of silica fibers. Second, one can convert from the HE11 to the TE01 mode
using a bend converter [37], a process that can yield more than 90% coupling efficiency [38]
for one of the LP01 polarizations.
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Fig. 12. Panel (a) shows the energy density of the operating mode as a function of distance
from core center at two different wavelengths. The solid (blue) line represents the energy
distribution at 1.55µm, which is in the center of the operating band and the dotted (red)
line represents a wavelength on the other side of the anticrossing. The vertical black line
represents the core radius. Panel (b) shows the dispersion curve withdots signaling the two
wavelengths for which the energy distributions can be found in panel 9a).

4.3. Discussion

The fact that a large part of the power in the operating mode islocalized in the defect for the
wavelengths of interest means that the operating mode in thedispersion-compensating fiber will
“see” more of the properties of the materials in the dielectric mirrors than the operating mode
of the long-haul fiber does. Therefore, the performance of the fiber (such as the figure of merit,
defined as dispersion parameter divided by losses per unit length) of this fiber will be affected
much more by material parameters than is the case for the defect-free fiber. Because some
possible high-index material candidates have quite high absorption losses and nonlinearities,
the resulting fiber losses and nonlinearities experienced per unit length of fiber will be larger
than for silica-based dispersion-compensating fibers. However, since the dispersion parameter
of the OmniGuide dispersion-compensating fiber is approximately three orders of magnitude
larger than those of silica based dispersion-compensatingfibers, we can tolerate losses per unit
length that are much higher than in such fibers.

To make specific predictions about the loss and nonlinear performance, we need to make
assumptions about the inherent material properties. Chalcogenide glasses, an attractive high-
index material, have losses ranging from∼100 dB/km to thousands of dB/km [39], therefore
a loss of 400 400 dB/km seems realistic. If one uses silica glass as the low-index material, its
contributions to the absorption losses will be negligible.Using these numbers we will now cal-
culate the figure of merit; we employ a fiber structure with a defect in the fourth innermost layer
that is twice the thickness of an ordinary high-index layer,but rescale the entire structure (ie,
change the dimension of the scaling parametera) so that the operating wavelength (1.55µm)
is at the point of maximum negative dispersion parameterD. At this point,D=-54,200 ps/nm-
km and the material absorption is 45 dB/km, giving a figure of merit of 1200 ps/nm-dB. The
large absorption losses reflect the fact that in this dispersion-compensating fiber the operating
mode has a substantial presence in the defect. Alternatively, if we operate the fiber in the re-
gion where its slope is matched with Corning’s LEAF fiber, we obtain a figure of merit of
246 ps/nm-dB (the figure of meritacross a band, here 40 nm, is defined as the maximum dis-
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persion divided by maximum losses). If one could reduce bulkabsorption losses to 100 dB/km
(for instance through more careful selection of high-indexmaterial and better materials pro-
cessing), the FOM would increase to 984 dB/nm-dB. For comparison, commercially available
dispersion-compensating fiber modules have figures of meritranging from 50 to 200 ps/nm-dB.

In the calculations above, we assumed that there were no contributions to losses due to ra-
diation, even though for a finite number of layers some power will leak out. However, for the
dispersion-compensating fiber design we find that at 1.55µm adding a single bilayer will de-
crease the losses by a factor six, and one can therefore achieve arbitrarily low radiation losses
by using a sufficiently large number of layers. Using only thirty layers we obtain losses that are
below 1 dB/km, which is so far below the absorption losses that the losses due to radiation are
negligible.

5. Design of zero-dispersion transmission fibers

Thus far in this work, we have focused on exploiting the flexibility of the OmniGuide fiber
structure to create a fiber that can compensate the dispersion accumulated in transmission
fibers. A more appealing way of addressing the problem of dispersion than the addition of
dispersion-compensating devices to transmission systemswould be to eliminate the dispersion
in the transmission fibers themselves. This strategy has been widely employed using the Zero
Dispersion Shifted Fibers. These are single-mode silica-based transmission fibers whose index
profile has been tailored such that the waveguide dispersionand material dispersion balance
each others exactly. However using such fibers in DWDM systemswas problematic, because
zero dispersion enhances interchannel nonlinear effects such as four-wave mixing. Therefore,
to avoid the nonlinear effects in silica fibers, modern transmission systems employ fibers with
a small, positive dispersion parameter, which necessitates dispersion compensation.

The OmniGuide fiber structure offers a different and far moreappealing solution to the prob-
lem: the OmniGuide transmission fibers have nonlinearitiesthat are four orders of magnitude
lower than those of silica fiber, and therefore operating thefiber at or near zero dispersion is
feasible, even for multichannel systems with low channel spacing. Unfortunately, the OmniGu-
ide long-haul fiber does have a positive dispersion parameter on the order of 7-10 ps/nm-km, as
Fig. 5 shows. It would therefore be beneficial to modify the design of this fiber to achieve zero
dispersion. We do this by changing the thickness of a few of the innermost layers so as to allow
some power to penetrate into the cladding, like in the dispersion-compensating fiber. The result-
ing structure is equal to the structure of the long-haul fiber, except that the odd numbered layers
have low index, layer 1 has thickness 0.256µm (instead of 0.358µm) and layer 2 has thickness
0.137µm (instead of 0.153µm). All layers outside these two innermost layers have the same
dimensions as the long-haul fiber, as governed by the grazing-incidence quarter-wave condition
of Eq. 7. However, we choose to operate this fiber at the wavelength of zero dispersion. At this
wavelength, less than 0.1% of the power penetrates into the cladding, and therefore the losses
and nonlinearities of the cladding materials remain strongly suppressed. Absorption losses will
only be an order of magnitude larger than for the long-haul fiber, and because the nonlinearities
of the fiber are still governed by the nonlinear coefficient ofthe air core, the nonlinearity of
this fiber will only increase by a few percent. For power levels used in modern communication
systems, we therefore do not expect nonlinear effects to play any significant role.

Although the underlying reason for the modified dispersion behavior in this situation is
the same as in the dispersion-compensating fiber design, itsmanifestation is quite different,
in particular the dispersion parameter is shifted marginally (compared to the changes in the
dispersion-compensating fiber). The difference is due to the much stronger interaction between
the core and cladding mode, which causes a much more gradual transition to the defect state.
The interaction is strong because the defect is in the two layers closest to the core. Furthermore
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Fig. 13. Dispersion curves for OmniGuide zero dispersion fiber. Panel (a) shows the disper-
sion of the zero dispersion fiber together with the OmniGuide long haul fiberover a broad
wavelength range. Panel (b) zooms in on the dispersion properties forthe zero dispersion
fiber over a 20 nm band.

the frequency of strongest interaction between the defect mode and the operating mode is far
from the operating wavelength, and this reduces the effect of the defect further. The overall
result is thus a mode which strongly resembles the core mode of a defect-free structure, but
with slightly modified dispersion characteristics.

Achieving zero dispersion at a single wavelength is of little value if the dispersion slope
around that point is large. We therefore design the Zero Dispersion fiber to have as flat a disper-
sion slope as possible. The resulting dispersion curve can be found in Fig. 13. This curve has a
dispersion slope of 0.11 ps/nm2-km. Using a dispersion limit of [16]

B2 ·D ·L < 2·105 (10)

we can estimate the information carrying capacity as a function of fiber length for uncompen-
sated transmission. We find that the Zero Dispersion Fiber can support 25 40 Gb/s channels
over a distance of 100 km, or it can alternatively support 20010 Gb/s channels over 500 km.
We have here used a channel spacing of 100 GHz for the 40 Gb/s signal and 50 GHz for a
10 Gb/s signal. These are conservative estimates for the required channel spacing, since the
low nonlinearities permit the use of modulation formats that minimize the spectral width of the
signal.

As a more exotic example of the principle of tailoring dispersion properties by introducing
a defect, we show that by creating a fiber with a large defect weattainmultiplepoints of zero
dispersion. This can be accomplished by making the defect solarge that it supports multiple
modes, as illustrated in Fig. 14. We see that between the regions of strong interaction between
the core and cladding mode, there are regions where the second derivative of the frequency
changes sign, and hence these will be points of zero dispersion. By making layer 1 a low-index
layer 9.9µm thick and using the regular structure defined by the quarter wave condition of
Eq. 7 outside this layer we obtain a defect that supports so many m= 0 defect modes within
the TE band gap that the fiber has eight points of zero dispersion, as Fig.15 illustrates.

An important advantage of this fiber over other zero dispersion fibers, which further immu-
nizes the fiber against nonlinear effects, is that the different points of zero dispersion in fact
have different group velocities. Therefore, if we would choose to operate one channel at each
point of zero dispersion, these different channels would not interact with each other with the
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Fig. 14. Schematic representation of the interaction between multiple defectmodes and
multiple core-confined modes.Panel (a) shows three defect modes (blue) and the core-
confined modes (red) separately, while panel (b) shows the resulting modal structure when
the modes interact.
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Fig. 15. Dispersion curve for the OmniGuide multiple zero dispersion fiber.

strength of neighboring channels at zero dispersion; in fact, the phase matching between the
different channels corresponds to that of a fiber with an extremely large dispersion parameter.
Thus, the difference in group velocity effectively prevents four wave mixing, whereas the low
nonlinearities of the core as well as the zero dispersion prevent problems due to self phase mod-
ulation. Consequently the fiber provides good protection against all types of Kerr nonlinearities.
Unfortunately, the large dispersion slope (>15 ps/nm2-km at the point of zero dispersion) of
the fiber significantly limits the amount of bandwidth each zero-dispersion point could support.
Applying the same parameters as we did in the section on the Zero Dispersion Fiber, we find
that each point of zero dispersion could support one 10 Gb/s channel over 500 km.

6. Conclusions

We have shown that the group-velocity dispersion of photonic bandgap fiber can be tailored by
introduction of geometrical defects in the otherwise perfectly periodic structure that guides light
within the fiber core. We presented several examples of such tailoring that attain unprecedented
dispersion characteristics, by using exact theoretical methods. Moreover, we have introduced a
powerful theoretical model, based on a “tight-binding” picture of core/defect mode anticross-
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ings, which provides a basis for understanding and designing the dispersion behavior of a wide
range of physical systems.

In the model system of a hollow-core OmniGuide fiber, which guides light within Bragg
mirrors formed by concentric rings of two alternating dielectrics, we have demonstrated sev-
eral unusual results. First, we designed a dispersion-compensating fiber that attains dispersion
parameters of up to -500,000 ps/nm-km with the ability to match the dispersion slope of an
arbitrary transmission fiber. Such a large dispersion parameter enables dispersion compensa-
tion in 1/1000 the length of conventional compensating fibers. Moreover, the dispersion/loss
figure of merit exceeds that of contemporary systems by up to afactor of 5; even better values
could be obtained with future material developments for photonic bandgap fibers. Second, we
designed a transmission fiber with a range of near-zero dispersion sufficient to transmit 200 10
Gb/s channels over 100 km without requiring compensation. Moreover, this fiber design ex-
ploits the ability of hollow-core OmniGuide fibers to suppress material nonlinearity, to such an
extent that nonlinear effects such as four-wave mixing are negligible over the above-mentioned
transmission span. Third, we exploited the simple design principles provided by our anticross-
ing model in order to demonstrate a fiber with multiple frequencies having zero dispersion,
providing an interesting medium for wavelength-multiplexed transmission.

We present the above designs within the theoretical framework of a simple model involving
the interaction between the conventional core-guided modeand a “defect mode” confined by an
intentional defect introduced in the periodic photonic-crystal cladding. As viewed in a coupled-
mode (or tight-binding) framework, when the dispersion relations of these modes intersect they
interact to form an anticrossing region, characterized by asharp exchange in mode slope and
field pattern between the two modes. If the modes are weakly interacting (well separated),
this results in high dispersion, and in other cases one can obtain unusual tailored dispersion
characteristics. Not only does this model provide an intuitive understanding of the modal char-
acteristics obtained by an exact calculation, but it also makes clear the influence of different
structural parameters (“knobs”) that can be used to tune thedispersion. Furthermore, these ba-
sic principles can also be applied to enhance the understanding of many other technologies
employed in contemporary transmission systems, includingfiber Bragg gratings, etalons, and
W-shaped dispersion-compensating fibers.

Because our anticrossing picture expresses the fiber behavior as a composite of two much-
simpler waveguides that are already well understood, one can find a set of independent knobs
that control one waveguide at a time or the interaction of thetwo. The first knob is the depth of
the defect within the cladding, which controls the interaction strength: the interaction decreases
exponentially, with a corresponding increase in dispersion, with the depth, as can be seen from
coupled-mode theory. The second knob is the structure of thedefect, and in particular the size
of the defect layer: this shifts the frequency of the defect mode (and thus the anticrossing)
up and down proportionally to the size as understood by Fabry-Perot cavity theory. As is also
well understood from the Fabry-Perot theory, a sufficientlylarge defect will support multiple
defect modes, leading to multiple anticrossing, which we exploited to obtain multiple disper-
sion zeroes. A third knob is the overall scaling of the structure, which by the scalability of
Maxwell’s equations leads simply to a scaling of the wavelengths and field patterns. This knob
is particularly useful because it can be controlled dynamically during fiber drawing to fine-tune
dispersion slope and other characteristics. Finally, an understanding of these knobs not only
permits design and tuning of the dispersion; it also determines the corresponding manufactur-
ing tolerances.
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